
Bε-trees
CSCI 333

Williams College

Logistics

• Lab 2b

• Office hours Tuesday night, 7-9pm

• Final Project Proposals

• Due Friday — Come see me!

Last Class

• General principles of write optimization

• LSM-trees
‣ Operations
‣ Performance

• LevelDB - SSTables store key-value pairs at each level

• PebblesDB - Fragmented LSM

• WiscKey - Separates keys (LSM) from values (log)

This Class

• Bε-trees
‣ Operations
‣ Performance

• Choosing Parameters

• Compare to B-trees and LSM-trees

But first… Tradeoffs

What are some of the tradeoffs we’ve discussed  
so far in topics we’ve covered?

Big Picture:
Write-Optimized Dictionaries
• New class of data structures developed in the ’90s

• LSM Trees[O’Neil, Cheng Gawlick, & O’Neil ’96]
• Bε-trees[Brodal & Fagerberg ’03]
• COLAs[Bender, Farach-Colton, Fineman, Fogel, Kuzmaul & Nelson ’07]
• xDicts[Brodal, Demaine, Fineman, Iacono, Langerman & Munro ’10]

• WOD queries are asymptotically as fast as a B-tree
(at least they can be in “good” WODs)

• WOD inserts/updates/deletes are orders-of-
magnitude faster than a B-tree

Bε-trees[Brodal & Fagerberg ’03]

• Bε-trees: an asymptotically optimal key-value store
‣ Fast in best cases, bounds on worst-cases

• Bε-tree searches are just as fast as* B-trees

• Bε-tree updates are orders-of-magnitude faster*

*asymptotically, in the DAM model

B-Bε

Bε
B

. . .

.
O(Bε) children

O(log N)Bε

B and ε are parameters:
• B ➡ how much “stuff” fits in one node
• ε ➡ fanout ➡ how tall the tree is

O(N/B) leaves

Bε-trees[Brodal & Fagerberg ’03]

• Bε-tree leaf nodes store key-value pairs

• Internal Bε-tree node buffers store messages
‣ Messages target a specific key
‣ Messages encode a mutation

• Messages are flushed downwards, and eventually
applied to key-value pairs in the leaves

High-level: messages + LSM/B-tree hybrid

Bε-tree Operations

• Implement a dictionary on key-value pairs
▪ insert(k,v)
▪ v = search(k)
▪ {(ki,vi), … (kj, vj)} = search(k1, k2)
▪ delete(k)

• New operation:
▪ upsert(k, ƒ, 𝚫)

Talk about soon!

Bε-tree Inserts
All data is inserted to
the root node’s buffer.

When a buffer fills, contents
 are flushed to children

Bε-tree Inserts

Bε-tree Inserts

Bε-tree Inserts

Flushes can cascade if not
enough room in child nodes

Bε-tree Inserts

Flushes can cascade if not
enough room in child nodes

Invariant: height in the tree
preserves update order

Bε-tree Inserts

Bε-tree Searches
Read and search all nodes

on root-to-leaf path

Newest insert is closest
to the root.

Search all node buffers  
for messages 

applicable to target key

Updates

• In most systems, updating a value requires:
read, modify, write

• Problem: Bε-tree inserts are faster than searches
‣ fast updates are impossible if we must search first

upsert = update + insert

FUSE FAT write?

Upsert messages
• Each upsert message contains a:

• Target key, k
• Callback function, ƒ
• Set of function arguments, 𝚫

• Upserts are added into the Bε-tree like any other message

• The callback is evaluated whenever the message is applied
‣ Upserts can specify a modification and lazily do the work

Bε-tree Upserts
upsert(k,ƒ,𝚫)

Bε-tree Upserts
Upserts are stored in the

tree like any other operation

Bε-tree Upserts

Bε-tree Upserts

Searching with Upserts
Read all nodes on root-to-

leaf search path

Apply updates in reverse
chronological order

Upserts don’t harm searches, but
they let us perform blind updates.

Thought Question

• What types of operations might naturally be
encoded as upserts?

Performance Model

• Disk Access Machine (DAM) Model[Aggarwal & Vitter ’88]

• Idea: expensive part of an algorithm’s execution is
transferring data to/from memory

• Parameters:
- B: block size
- M: memory size
- N: data size

Memory

Disk

B

B

Performance = (# of I/Os)

… …

… …

Point Query:

Range Query:

Insert/upsert:

… …

O(logB"N)

B"

B �B"

?

[https://www.chilimath.com/lessons/advanced-algebra/logarithm-rules/]

[https://www.khanacademy.org]

Goal: Compare query performance to a B-tree O(logBN)
➡Bε-tree fanout:
➡Bε-tree height:

B"

O(logB"N) Different bases…

… …

… …

Point Query:

Range Query:

Insert/upsert:

… …

O(logB"N)

B"

B �B"

?
O(logB N

")

… …

… …

Point Query:

Range Query:

Insert/upsert:

O(logB N
")

O(logB N
" + `

B)

… …

O(logB"N)

B"

B �B"

O(`
B)

?

… …

… …

Point Query:

Range Query:

Insert/upsert:

O(logB N
")

O(logB N
" + `

B)

… …

O(logB"N)

B"

B �B"

?

Goal: Attribute the cost of flushing across all messages  
that benefit from the work.

➡ How many times is an insert flushed? O(logB"N)

➡ How many messages are moved per flush? O(B�B"

B")

B-Bε

Bε
B

➡ How do we “share the work” among the messages?
• Divide by the total cost by the number of messages

… …

… …

Point Query:

Range Query:

Insert/upsert:

O(logB N
")

O(logB N
" + `

B)

O(logB N
"B1�")

… …

O(logB"N)

B"

B �B"

Batch size divides the insert cost…
Inserts are very fast!

Each flush operation
moves itemsO(B�B"

B")Each insert message is
flushed timesO(logB"N)

Recap/Big Picture
• Disk seeks are slow ➡ big I/Os improve performance

• Bε-trees convert small updates to large I/Os
• Inserts: orders-of-magnitude faster
• Upserts: let us update data without reading
• Point queries: as fast as standard tree indexes
• Range queries: near-disk bandwidth (w/ large B)

Question: How do we choose B and ε?

Thought Questions
• How do we choose ε?

• Original paper didn’t actually use the term Bε-tree (or
spend very long on the idea). Showed there are
various points on the trade-off curve between B-trees
and Buffered Repository trees

• What happens if ε = 1?
• What happens if ε = 0?

B-Bε

Bε
B

ε = 1 corresponds to a B-tree
ε = 0 corresponds to a Buffered Repository tree

Thought Questions
• How do we choose B?

• Let’s first think about B-trees
• What changes when B is large?
• What changes when B is small?

• Bε-trees buffer data; batch size divides the insert cost
• What changes when B is large?
• What changes when B is small?

B-Bε

Bε
B

In practice choose B and “fanout”.
B ≈ 2-8MiB, fanout ≈16

Thought Questions
• How does a Bε-tree compare to an LSM-tree?
‣ Compaction vs. flushing
‣ Queries (range and point)
‣ Upserts

Thought Questions
• How would you implement

‣ copy(old, new)
‣ delete(“large”) :: kv-pair that occupies a whole leaf?
‣ delete(“a*|b*|c*”) :: a contiguous range of kv-pairs?

Next Class

• From Be-tree to file system!

