B-trees (Ubiquitous and otherwise)

Williams College :: CSCI 333 Spring 2019

Deadlines

- Lab 2b
- Final Project

Project details

- Can choose partners
 - Status quo is to remain with your FUSE FAT teammates
- Must submit proposal
 - Must meet in person to discuss
- Final project includes a workshop-style write-up

Last Class

Hashing and Filters

- Bloom filters
- Cuckoo filters
- Quotient filters

Support "approximate membership" queries

- No false negatives
- Tunable false positive rate

Cache efficiency matters

Quotient > Cuckoo > Bloom

API matters

• Deletes? Merges? Resizing?

This Class

DAM model

How to analyze external memory algorithms

B-trees

- Operations
- Variants
- Discussion

How do you keep data organized?

An Analogy from [Comer 79 CSUR]

Filing Cabinet: folders of records, alpha-sorted by last name

- We think in terms of keys and values
 - Keys are the employee's last name
 - > Values are the employee file (held in a folder, one per employee)
- A filing cabinet supports two types of searches
 - Sequential
 - read through every folder in every drawer in order
 - Random
 - use the labels on the drawers & folders to find the single record of interest

Indexes (yes, colloquially pluralized that way)

Indexes organize data

- Random searches utilize an *index* to:
 - Direct our search towards a small part of the total data
 - (Hopefully) speed up our search

Questions

- What operations does an index support?
- How do we quantify index performance?
- Is the data part of the index, or does the index "sit on top of" the data?

What operations does an index support?

Operations

- Insert(k,v): inserts key-value pair (k,v)
- Delete(k): deletes any pair (k,*)
- PointQuery(k): returns all pairs (k,*)
- RangeQuery(k_1, k_2): returns all pairs (k, *), $k_1 \le k \le k_2$

In short, indexes support the *dictionary* interface.

Used when data is too big for memory.

How to we quantify index performance?

DAM model:

- Useful when data is too big for memory
 - Data is transferred in **blocks** between RAM and disk.
- The number of block transfers dominates the running time.
 - Searching through a given block is "free" (once in-memory)

Goal: Minimize # of I/Os

• Performance bounds are parameterized by block size **B**, memory size **M**, data size **N**.

[Aggarwal+Vitter '88]

DAM Model an B-tree Analysis

Analyze worst-case costs by counting I/Os

- B: unit of transfer
 - B-tree node size
- M: amount of main memory
 - We can cache M/B nodes in memory at once
- N: size of our data
 - We're not worried about disk space, we use N to describe our tree
- We will think about the tree shape (height, fanout), then describe each operation's cost in terms of the DAM model

The B-tree

Terms and Conditions

B-trees store records

- Records are key-value pairs
- We assume that keys are
 - Unique (to simplify analysis)
 - Ordered

Terms and Conditions

Rules for our B-trees

- B-ary tree
 - Internal nodes have between d and 2d keys called pivots
 - Must be half full!
 - At least d+1 pointers to children (one more pointer than pivot key)
- If an operation would cause a violation of one of these invariants, must rebalance!
- Note: our B-tree's internal nodes *do not* store records
 - Option 1: Store (key, value) pairs in leaves
 - Option 2: Store (key, pointer to value) in leaves

Terms and Conditions

Several B-tree variants

• We will describe a "B^{?!+-}-tree" here, noting features of specific variants as they come up

Popular Variants of B-trees

- B-tree: more-or-less what we'll describe here
- B+-tree: B-tree where leaves form a linked list
- B*-tree: B-tree where nodes always 2/3 full

B-tree Point Queries

B-tree Point Queries

Steps

- Starting at the root, find the first *pivot key* that is larger than your *search key*, and follow the pointer to its left
 - If there are no pivot keys larger than your search key, follow the last pointer
- Repeat until you arrive at a leaf node
- Search the leaf node (ordered list) for your target key
- Return the key-value pair (if found), or NONE

This work is done during an insert (need to find place where new key-value pair belongs), so we will walk through this then.

B-tree Point Queries

Cost

- How many nodes must be read/written in a search?
 - We read the root node to search the pivot keys
 - We recurse on the subtree
- Total cost of a search: O(h)
 - Recall h = O(log_BN)

B-tree Insertions

B-tree Insert

Steps

- Find the leaf node where your key-value pair belongs (point query)
- Insert your key-value pair into that leaf

Splitting a B-tree node

Steps

- Sort all 2d+1 keys (2d + new key that causes overflow)
- Make new node with first d keys
- Make new node with last d keys
- Move middle key as a pivot of the parent
- Add pointers to new children
- Recurse up the tree if necessary (rare)

<u>Summary</u>	Point Query	Insert	Delete	Range Query
B-tree	$O(\log_B N)$	$O(\log_B N)$	$O(\log_B N)$	$O\left(\log_B N + \frac{K}{B}\right)$

B-ary search tree

B-tree $O(\log_B N)$ $O(\log_B N)$ $O(\log_B N)$ $O(\log_B N)$ $O\left(\log_B N + \frac{K}{B}\right)$

<u>Summary</u>	Point Query	Insert	Delete	Range Query
B-tree	$O(\log_B N)$	$O(\log_B N)$	$O(\log_B N)$	$O\left(\log_B N + \frac{K}{B}\right)$

<u>Summary</u>	Point Query	Insert	Delete	Range Query
B-tree	$O(\log_B N)$	$O(\log_B N)$	$O(\log_B N)$	$O\left(\log_B N + \frac{K}{B}\right)$

Splitting a B-tree node

Cost

- How many nodes must be read/written in a local split?
 - We read the node being split
 - We write the old node and the new node (first **d** keys, last **d** keys)
 - We read/write the parent node
- What if we overflow the parent?
 - If we recurse, we already read the parent, so we repeat the same steps one level above
- Total cost of an insert: O(h)
 - Reads: O(h)
 - Writes: O(2h)

B-tree Range Queries

(Range query: point query + successor^k)

Steps

- Find the leaf node where the first key-value pair belongs (point query)
- Read all key-value pairs from that node that are part of your range
- Consult your parent to find its next child pointer
- Read all key-value pairs from that node that are part of your range
- Loop

B-tree Deletes

B-tree Deletions

Steps

- Search for the leaf containing the target key-value pair (point query)
- Remove the element from the leaf (if present)
- If the size of the node drops below d, merge with a neighbor
 - Remove extra pivot key and pointer from parent (the pointer to the node that is being deleted as part of the merge)
 - Merge contents of nodes
 - Write parent and merged node
 - ▶ If the parent size dropped below **d**, recurse upwards

B-ary search tree

B-tree $O(\log_B N)$ $O(\log_B N)$ $O(\log_B N)$ $O(\log_B N)$ $O\left(\log_B N + \frac{K}{B}\right)$

<u>Summary</u>	Point Query	Insert	Delete	Range Query
B-tree	$O(\log_B N)$	$O(\log_B N)$	$O(\log_B N)$	$O\left(\log_B N + \frac{K}{B}\right)$

Summary

- B-trees are the de-facto search structure for external memory applications
- Variants exist to tune utilization and range scan performance, but the idea is the same
- We can analyze performance using the DAM model

Other discussions

- Concurrent access how to lock the tree?
 - Hand-over-hand locking for queries
 - Reservations or top-down splitting
- How to choose the node size (B)?
 - Must balance competing goals:
 - Small B minimizes write amplification (each update requires writing whole node)
 - Large B minimizes fragmentation (more data read per seek)

Looking Ahead

More trees

- Log structured merge trees (next class)
- Be-trees Monday

Write optimization

- Making our trees lazy!
 - Better I/O performance for writes
 - Not worse off for reads