
B-trees (Ubiquitous and
otherwise)

Williams College :: CSCI 333
Spring 2019

Logistics

Deadlines
• Lab 2b

• Final Project

Project details
• Can choose partners

‣Status quo is to remain with your FUSE FAT teammates

• Must submit proposal

‣Must meet in person to discuss

• Final project includes a workshop-style write-up

Last Class

Hashing and Filters
• Bloom filters

• Cuckoo filters

• Quotient filters

Support “approximate membership” queries
• No false negatives

• Tunable false positive rate

Cache efficiency matters
• Quotient > Cuckoo > Bloom

API matters
• Deletes? Merges? Resizing?

This Class

DAM model
• How to analyze external memory algorithms

B-trees
• Operations

• Variants

• Discussion

How do you keep data
organized?

An Analogy from [Comer 79 CSUR]

Filing Cabinet: folders of records, alpha-sorted by
last name
• We think in terms of keys and values

‣Keys are the employee’s last name
‣Values are the employee file (held in a folder, one per employee)

• A filing cabinet supports two types of searches

‣Sequential
‣ read through every folder in every drawer in order
‣Random
‣ use the labels on the drawers & folders to find the single record of interest

Indexes (yes, colloquially pluralized that way)

Indexes organize data
• Random searches utilize an index to:
‣Direct our search towards a small part of the total data
‣ (Hopefully) speed up our search

Questions
‣What operations does an index support?
‣How do we quantify index performance?
‣ Is the data part of the index, or does the index “sit on top of” the data?

What operations does an index support?

Operations
• Insert(k,v): inserts key-value pair (k,v)

• Delete(k): deletes any pair (k,*)

• PointQuery(k): returns all pairs (k,*)

• RangeQuery(k1,k2): returns all pairs (k,*), k1≤k≤k2

In short, indexes support the dictionary interface.
• Used when data is too big for memory.

How to we quantify index performance?
DAM model:
• Useful when data is too big for memory

‣Data is transferred in blocks between RAM and disk.

• The number of block transfers dominates the running time.

‣Searching through a given block is “free” (once in-memory)

Goal: Minimize # of I/Os
• Performance bounds are parameterized by  

block size B, memory size M, data size N.

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]

DAM Model an B-tree Analysis

Analyze worst-case costs by counting I/Os
• B: unit of transfer

‣B-tree node size

• M: amount of main memory

‣We can cache M/B nodes in memory at once

• N: size of our data

‣We’re not worried about disk space, we use N to describe our tree

• We will think about the tree shape (height, fanout), then
describe each operation’s cost in terms of the DAM model

The B-tree

Terms and Conditions

B-trees store records
• Records are key-value pairs

• We assume that keys are

‣Unique (to simplify analysis)
‣Ordered

Terms and Conditions

Rules for our B-trees
• B-ary tree

‣ Internal nodes have between d and 2d keys called pivots
‣ Must be half full!
‣At least d+1 pointers to children (one more pointer than pivot key)

• If an operation would cause a violation of one of these
invariants, must rebalance!

• Note: our B-tree’s internal nodes do not store records

‣Option 1: Store (key, value) pairs in leaves
‣Option 2: Store (key, pointer to value) in leaves

Terms and Conditions

Several B-tree variants
• We will describe a “B?!+--tree” here, noting features of

specific variants as they come up

Popular Variants of B-trees
• B-tree: more-or-less what we’ll describe here

• B+-tree: B-tree where leaves form a linked list

• B*-tree: B-tree where nodes always 2/3 full

B-ary search tree

B-tree: standard DAM dictionary

B

≧ half full O(logB N)

Summary Point Query Insert Delete Range Query

B-tree

23 57 76

02 05 06

12

77 81 86

90

25 29 43 59 64 75

O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

What does B Stand for?

B-tree Point Queries

B-tree Point Queries

Steps
• Starting at the root, find the first pivot key that is larger than

your search key, and follow the pointer to its left
‣ If there are no pivot keys larger than your search key, follow the last

pointer
• Repeat until you arrive at a leaf node

• Search the leaf node (ordered list) for your target key

• Return the key-value pair (if found), or NONE

This work is done during an insert (need to
find place where new key-value pair

belongs), so we will walk through this then.

B-tree Point Queries

Cost
• How many nodes must be read/written in a search?

‣We read the root node to search the pivot keys
‣We recurse on the subtree

• Total cost of a search: O(h)

‣Recall h = O(logBN)

B-tree Insertions

B-tree Insert

Steps
• Find the leaf node where your key-value pair belongs (point

query)

• Insert your key-value pair into that leaf

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

89

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

89

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90 8989

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

9089

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

9089

O(logB N)

82

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

9089

O(logB N)

82

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

9089

O(logB N)

82
82

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)

90

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

O(logB N)

95

77 81 82

8986 90

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

O(logB N)

95

77 81 82

8986 90

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)

95

90

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)95

90

95

No room! Need
to split the node.

Splitting a B-tree node

Steps
• Sort all 2d+1 keys (2d + new key that causes overflow)

• Make new node with first d keys

• Make new node with last d keys

• Move middle key as a pivot of the parent

• Add pointers to new children

• Recurse up the tree if necessary (rare)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)95

90

95

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)

90

95

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82

8986

O(logB N)

90

95

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82 89

86

O(logB N)

90 95

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 82 89

86

O(logB N)

90 95

Splitting a B-tree node

Cost
• How many nodes must be read/written in a local split?

‣We read the node being split
‣We write the old node and the new node (first d keys, last d keys)
‣We read/write the parent node

• What if we overflow the parent?

‣ If we recurse, we already read the parent, so we repeat the same steps

one level above
• Total cost of an insert: O(h)

‣Reads: O(h)
‣Writes: O(2h)

B-tree Range Queries

B-tree Range Query

(Range query: point query + successork)

Steps
• Find the leaf node where the first key-value pair belongs

(point query)

• Read all key-value pairs from that node that are part of your

range

• Consult your parent to find its next child pointer

• Read all key-value pairs from that node that are part of your

range

• Loop

B-ary search tree

B-tree: standard DAM dictionary

B

Summary Point Query Insert Delete Range Query

B-tree

O(logB N)

23 57 76

02 05 06

12

77 81 86

90

25 29 43 59 64 75

O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B-tree Deletes

B-tree Deletions

Steps
• Search for the leaf containing the target key-value pair

(point query)

• Remove the element from the leaf (if present)

• If the size of the node drops below d, merge with a

neighbor

‣Remove extra pivot key and pointer from parent (the pointer to the node

that is being deleted as part of the merge)
‣Merge contents of nodes
‣Write parent and merged node
‣ If the parent size dropped below d, recurse upwards

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

43

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

43

O(logB N)

02 05 06 25 29 43 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

43

O(logB N)

02 05 06 25 29 59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23 57 76

12

77 81 86

90

O(logB N)

02 05 06 25 29

59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23

57

76

12

77 81 86

90

O(logB N)

02 05 06 25 29

59 64 75

B-ary search tree

B-tree: standard DAM dictionary

Summary Point Query Insert Delete Range Query

B-tree O(logB N) O

✓
logB N +

K

B

◆
O(logB N) O(logB N)

B

23

57

76

12

77 81 86

90

O(logB N)

Summary
• B-trees are the de-facto search structure for external

memory applications

• Variants exist to tune utilization and range scan

performance, but the idea is the same

• We can analyze performance using the DAM model

Other discussions
• Concurrent access - how to lock the tree?

‣ Hand-over-hand locking for queries
‣ Reservations or top-down splitting

• How to choose the node size (B)?

‣Must balance competing goals:
‣ Small B minimizes write amplification (each update requires writing whole node)
‣ Large B minimizes fragmentation (more data read per seek)

Looking Ahead

More trees
• Log structured merge trees (next class)

• Be-trees Monday

Write optimization
• Making our trees lazy!

‣Better I/O performance for writes
‣Not worse off for reads

