
#Hashing
CS136

Spring 2018

Logistics
• Practice Exam, Study Guide posted

• Looonger than actual exam, but problems are the
genre of problem you can expect to see

• Grades through lab 7 should be out - let us know if
anything is missing

• Still waiting on 8, 9, 10 from TAs, but done by reading
period

• TA/Lab survey - please fill it out! We want to continue to
improve the lab support, and your feedback tells us how

• Office hours for next week will be on the calendar
• Review Session Friday, May 18 @ 7pm

Last Time
• Hashing

• Linear probing
• External Chaining
• % (mod)

• (Not on exam)
• Cuckoo hashing

This Time
• Sets/Membership Queries

• Checksums/Integrity

• Duplicate Detection

• Course survey

Quick Hash Table Review
•A hash function maps a key to an index

•The index specifies a hash table bin where the key-
value pair should be stored.

•Assuming:
•Computing the hash function is O(1)
•Our hash function evenly distributes objects
•We have a reasonable load factor
•Bins have O(1) random access (e.g., an array)

• We can get/put key-value pairs in O(1) time!!!

Problems?
• Typically, the domain (set of possible keys) is larger
than the range (possible of hash function outputs)

• Multiple keys will map to the same bin

All Possible Strings
(Domain)

32-bit
Integers

(Range)

Managing Collisions
• Collision: two keys map to the same bin

• We can minimize cost of collisions in a few ways:
• Use a hash function that uniformly distributes keys across
the range

• Keep the load factor low
• Use an array with a (relatively) prime-number-length

‣ Why?
‣Consider this String hash function: 
 h(s) = s[0] + k1*s[1] + k2*s[2] + … kn-1*s[n]
‣Strings with the same s[0] hash the same modulo k.

Techniques to Resolve
Collisions

• Linear Probing
• When something else is in our bin, scan and insert
into the first bin without an element

• When we delete a key-value pair, drop a placeholder
to note that other elements may have been shifted
past the newly “emptied” bin

• External Chaining
• Instead of key-value pairs, each bin holds a list
• To insert: place a key-value pair at end of its bin’s list
• Downside: extra space required to store lists

New Technique: Cuckoo
Hashing

Pure Evil

https://birdingbeijing.com/beijing-cuckoo-project/

By Galawebdesign (Own work by uploader http://galawebdesign.com)
[CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons

Techniques to Resolve
Collisions

• Cuckoo Hashing
• Select 2 independent hash functions

• A key can now land in 1 of 2 places
• Resolve collisions by “pushing” others out
of our bin and placing them in the bin
associated with their other hash

• The process may need to repeat

• What happens when we:
• put(X) where hash1(X) = 0?
• put(Y) where hash1(Y) = 7, hash2(Y)=9?

We must avoid
cycles!

https://commons.wikimedia.org/wiki/File:Cuckoo.svg

Cuckoo Hashing
• For independent hash functions and low load factor,
O(1)

•No clusters like we have with linear probing

• No shifting “down the line” on inserts

• At most 2 checks per lookup

Membership Queries

Memory Hierarchy
• Problem 1: Sometimes (almost always) we have
more data than fits in memory

• Solution: Store a subset of our data in a cache

• When we need something
that isn’t in cache, we kick
out the least valuable things
to make room for the thing
we need

Memory Hierarchy
• Problem 2: Not all levels in our cache have the
same cost

Memory Hierarchy
• Problem 2: Not all levels in our cache have the
same cost

Memory Hierarchy
• Problem 3: Not all levels in our cache have the
same speed

Memory Hierarchy
• Result: we have a lot of slow, cheap storage, less
RAM, and very little CPU cache.
• We will focus on the interaction between RAM
and disk

Fast,
expensive,

scarce

Slow,
cheap,
plentiful

Scenario: Photo Storage

Suppose:

• We have a small RAM cache that holds 2 photos

• Our cache is initially empty

• We read from disk into cache, and evict the least
recently used photo when we need space

Memory Hierarchy

Big, slow

Small, fast

Memory Hierarchy

Big, slow

Small, fast

get(cat)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat) ?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
get(liger)

?

Memory Hierarchy

Big, slow

Small, fast

get(cat)
get(cow)
get(dog)
get(goat)
get(cat)
get(liger)

???

?

Memory Hierarchy
• Problem: We paid an expensive cost just to find out
the thing we were looking for didn’t exist!!

• Idea: Cache a set of all the keys (names of all
photos on disk)

1. Check the names set first *before* checking disk

2. Don’t go to disk if we know the thing isn’t there

Membership Queries
• How to implement our name set?

•If we want to look things up quickly, use a hash
table

• If we want to avoid collisions:
• Make it big
• Use a large hash so to uniquely fingerprint each
file (P(collision) == small)

• New problem: keys can be long, fingerprints are
large. Now our set takes up a large portion of our
cache

Membership Queries
• Insight: we don’t need to be perfect.

• If we go to disk an extra time, no worse off
• False positives are not ideal, but they are OK

• If we don’t go to disk when something exists, BAD
• False negatives are correctness bugs, not OK

• We will build a structure that does approximate
membership queries and is more efficient than a set.

Bloom Filter
• Answers with “possibly in set” or “definitely not in set”
• We save space by not explicitly storing hashes or keys

• How it works:
• Create a bit array of m bits
• Select k hash functions
• Hash each element k times and set all k bits
• An element is missing if any of its k bits is unset
• An element may be present if all of its k bits are set

Bloom Filters

for hashFunctioni in hashFuncionsi…k:
bitmap[hashFunctioni(key) % m] = 1

Insert(key):

for hashFunctioni in hashFuncionsi…k:
if (bitmap[hashFunctioni(key) % m] != 1):

return “not in set”
return “maybe in set”

Query(key):

Bloom Filters
• Deleting keys?

• A key maps to k bits, and although setting any one of those
k bits to zero would remove that key from the set, it would
also remove every key that maps to any one of those bits.

• Deleting would introduce false negatives!

• Resizing Bitmap?
• No way to grow array using just the bit values
• Although keys are not stored, they are often available
• When the false positive rate gets too high (overloaded, too
many “deletes” still in bitmap), read keys from slower media
and resize+rehash

Related DS: Quotient Filters
• A nifty idea with an even nifty-er paper name (Don’t

Thrash: How to Cache your Hash in Flash)
• Uses linear probing to support efficient deletes and

merges
• “Write-optimized” data structure (my research area)
• Based on an end-of-chapter problem in an

undergraduate data structures textbook
• You can publish a paper with the skills you

already have!
• (and if you were like Bloom, you could name it

after yourself and live on in CS history!)

Integrity/Tamper
Evidence

Detecting Changes
• Sometimes we can’t trust the integrity of our stuff

• Our laptop is from 2006, and our HDD is dying…
• We store our data in “the cloud” and we don’t trust “the
man”

• We live in a place with government censorship and we
want to ensure no one has modified a document

• We download something from the internet and we are
afraid a “man-in-the-middle” has given us a decoy or a
virus

• We are a multi-national company that wants to verify that
people pay (multiple times?) for official software/media
(DRM)

Detecting Changes
• Observation: cryptographic hash functions have the
following properties
• Deterministic
• Non-invertible (given hash(x) impractical to find x)
• Large Range (many bits in hash)
• Evenly distributed

• Insight: If we pick a good enough hash function, we can
trust it to uniquely identify the contents
• (probability of a collision < probability of hardware error)

• related ideas: checksumming/fingerprinting

Detecting Changes
• Calculate a fingerprint (cryptographic hash) of objects that
we store, and we securely save the fingerprint

• If we later retrieve an object that we stored, recompute its
fingerprint
• If they match, we are (almost) guaranteed to be safe
• If they differ by even one bit, there is a problem

Detecting Changes
• Download verification (MD5 example)

• Scanning files for errors

• Git

• …

Detecting Duplicates

Deduplication
• Imagine you are a cloud storage provider, and someone
uploads the hit song Shoot_Pass_Slam.mp3
• Millions of other people will as well (Shaq Diesel went
platinum after all)

• Do we really need to store millions of copies of the
same file?
• NO! Hash tables/sets can map duplicate keys to the
same value

• Map every file called “Shoot_Pass_Slam.mp3” to the
same file contents

• What if the file names different?

Deduplication
 Instead of mapping:
 file_name -> file_contents
map:
 file_name -> hash_of_contents

Then have a separate key-value store mapping:
 hash_of_contents -> file_contents

• Insight: many problems in computer science can be solved
with a layer of indirection!

Deduplication
• What if we aren’t storing music, but file that are actively
modified?

• We may not want to deduplicate at the coarse granularity of
whole files

• Instead, break a file into chunks, and deduplicate chunks
• Now:

file_name -> recipe*

*A recipe contains (file offset, chunk length, fingerprint) triples

• We only store one copy of unchanged chunks!

Summary

• Hashing is a powerful technique with many uses

• We can build interesting new data structures

• We can add new twists to existing data structures

• We must be careful to use the right hash function
for the task

