CSCI 136
Data Structures &
Advanced Programming

Spring 2018
Lecture 34
Profs 2070567 and 74655

Administrative Details

Reminders
* No lab this week

* Many TAs will be holding normal hours to answer questions
about labs and practice exams

* Final exam
 Monday, May 21 at 9:30am in Chemistry 123
e Covers everything, with strong emphasis on post-midterm

e Study guide, sample exam will be posted on handouts page

e Review session
* Friday May I8

e Time!?

Last Time

* Hash tables implement the Map interface
* [obj.hashCode() % array.length] assigns objects to bins

e Collisions occur when multiple objects map to the
same bin
* We can resolve collisions using:

* Linear probing (aka open addressing)
e External chaining

Today’s Outline

* External Chaining to resolve collisions

* Fun hashing applications (not on exam)
e Cuckoo hashing
* Bloom Filters
* Verification/integrity

* Deduplication

Linear Proving Review

* A hash function maps a key-value pair to a bin

* If two keys hash to the same bin, we have a
collision

* Linear probing scans and places the collided
element in the first available bin, creating a run

* When we remove, must add a placeholder so we
don’t artificially break up runs

External Chaining

* |nstead of runs, we store a list in each bin

datal 1(C I1C 1C 10, 1C [10, 10, 1
T T T T e
(K,V) (KV) | | (KV) | | (KV) (K,V)
(K,V) (K,V) | | (KV) (K,V)

(K,V)

* Everything that hashes to bin, goes into list.

e get(), put(),and remove () only need to
check one slot’s list

* No placeholders!

Probing vs. Chaining

What is the performance of:
* put(K, V)
e LP: O(Il + run length)
e EC: O(l + chain length)
* get(K)
e LP: O(l + run length)
e EC: O(l + chain length)
e remove (K)
e LP: O(Il + run length)
e EC: O(l + chain length)

e Run/Chain size is important. How do we control
cluster/chain length?

Load Factor

* Need to keep track of how full the table is
* Why!
* What happens when array fills completely?
* Load factor is a measure of how full the hash
table is
* LF = (# elements) / (table size)
* When LF reaches some threshold, grow size
of array (typically threshold = 0.6)
e Challenges!?

Growing the Underlying Array

e Cannot just copy values
* Why!

e Key-value pairs’ bins may change

* Example: suppose (key.hashCode() == 11)
o || %7 =4
e |1 % 13=11I;

* Result: must recompute all hash codes, then
reinsert key-value pairs into new array

* Also: try to keep array sizes relatively prime

e Redistribute “clumps”

Good Hashing Functions

e Important point: All of this hinges on using
“good” hash functions that spread keys

“evenly”
* Good hash functions:
* Are fast to compute

e Distribute keys uniformly

* We almost always have to test “goodness”
empirically

Example Hash Functions

* What are some feasible hash functions for
Strings?
e Use the first char’s ASCII value?
e 0-255 only

* Not uniform (some letters more popular than others)

e Sum of all characters’ ASCII values!?
e Not uniform - lots of small words

* smile, limes, miles, slime are all the same

Example Hash Functions

e String hash functions commonly use weighted
SUMms
e Character values weighted by position in string

* Long words get bigger codes

* Distributes keys better than non-weighted sum

e Let’s look at different weights...

Hash of all words in UNIX
spelling dictionary (997

charAt(i)

)

n=s.length(

buckets)

i=0

T T To ! O @ 00%.0 o |
© >4
00§ &%e%ﬁo?w 0 %000 W a

Foeh &

g o Qo 080w BT

® 8o o&%oo oo

oooofoa @@o ,,Qwo o
0% * 8 © RO gﬁﬁ@

0 0
0 00% % o800 o © %o

.f@&@
o .
o *B ©® @% %%
° %pog &2, ® °%00
s& Q& §° 900 @g g |

°
@& o®

G ©
o WoeRE, § 2 0 -
000 ®o 2 sl

o8Py ¢

90

Aduanbai g

500 600 700 800 900

100 200 300 400
Bucket

0

' s.charAt(i) * 2!

90 I I I I I I I I I
30 :
70 + —
60 -
;)
2
o

0 100 200 300 400 500 600 700 800 900
Bucket

Z s.charAt(i) * 256!

This looks pretty good, but 256' is big...

5
]

L

n
N
&
|
1

Frequ

0 100 200 300 400 500 600 700 800 900
Bucket

Java uses:

E s.charAt(i) * 31"~V
i=0

' s.charAt(i) * 31!

o0
o
I
!

(o))
()
T
1

5
]

L

n

Frequ

0 100 200 300 400 500 600 700 800 900
Bucket

Hashtables: O(l) operations!?

* How long does it take to compute a String’s
hashCode!

e O(s.length())

* Given an object’s hash code, how long does it
take to find that object!

* O(run length) or O(chain length) PLUS cost of
.equals() method
e Conclusion: for a good hash function (fast,
uniformly distributed) and a low load factor
(short runs/chains), we say hashtables are O(l)

Summary

put get space
unsorted vector O(n) O(n) O(n)
unsorted list O(n) O(n) O(n)
sorted vector O(n) O(log n) O(n)
balanced BST O(log n) | O(log n) O(n)
array indexed by key O(l) O(l) O(key range)

