
CSCI 136
Data Structures &

Advanced Programming

Spring 2018
Lecture 34

Profs 2070567 and 74655

Administrative Details
Reminders
• No lab this week
• Many TAs will be holding normal hours to answer questions
about labs and practice exams

• Final exam
• Monday, May 21 at 9:30am in Chemistry 123
• Covers everything, with strong emphasis on post-midterm
• Study guide, sample exam will be posted on handouts page

• Review session
• Friday May 18

• Time?

Last Time

• Hash tables implement the Map interface
• [obj.hashCode() % array.length] assigns objects to bins
• Collisions occur when multiple objects map to the

same bin
• We can resolve collisions using:

• Linear probing (aka open addressing)
• External chaining

Today’s Outline

• External Chaining to resolve collisions
• Fun hashing applications (not on exam)
• Cuckoo hashing
• Bloom Filters
• Verification/integrity
• Deduplication

Linear Proving Review

• A hash function maps a key-value pair to a bin
• If two keys hash to the same bin, we have a

collision
• Linear probing scans and places the collided

element in the first available bin, creating a run
• When we remove, must add a placeholder so we

don’t artificially break up runs

External Chaining

• Instead of runs, we store a list in each bin

data[][][][][][][][]

(K,V)

(K,V)

(K,V)

(K,V)

(K,V)

(K,V) (K,V)

(K,V)

(K,V)

(K,V)

• Everything that hashes to bini goes into listi

• get(), put(), and remove() only need to
check one slot’s list

• No placeholders!

Probing vs. Chaining
What is the performance of:
• put(K, V)

• LP: O(1 + run length)

• EC: O(1 + chain length)

• get(K)
• LP: O(1 + run length)
• EC: O(1 + chain length)

• remove(K)
• LP: O(1 + run length)
• EC: O(1 + chain length)

• Run/Chain size is important. How do we control
cluster/chain length?

Load Factor

• Need to keep track of how full the table is
• Why?
• What happens when array fills completely?

• Load factor is a measure of how full the hash
table is
• LF = (# elements) / (table size)

• When LF reaches some threshold, grow size
of array (typically threshold = 0.6)
• Challenges?

Growing the Underlying Array

• Cannot just copy values
• Why?
• Key-value pairs’ bins may change
• Example: suppose (key.hashCode() == 11)

• 11 % 7 = 4;
• 11 % 13 = 11;

• Result: must recompute all hash codes, then
reinsert key-value pairs into new array

• Also: try to keep array sizes relatively prime
• Redistribute “clumps”

Good Hashing Functions

• Important point: All of this hinges on using
“good” hash functions that spread keys
“evenly”

• Good hash functions:
• Are fast to compute
• Distribute keys uniformly

• We almost always have to test “goodness”
empirically

Example Hash Functions

• What are some feasible hash functions for
Strings?
• Use the first char’s ASCII value?

• 0-255 only

• Not uniform (some letters more popular than others)

• Sum of all characters’ ASCII values?
• Not uniform - lots of small words
• smile, limes, miles, slime are all the same

Example Hash Functions

• String hash functions commonly use weighted
sums
• Character values weighted by position in string

• Long words get bigger codes

• Distributes keys better than non-weighted sum

• Let’s look at different weights…

s.charAt(i)S
n=s.length()

i = 0

Hash of all words in UNIX
spelling dictionary (997

buckets)

s.charAt(i) * 2iS
n

i = 0

s.charAt(i) * 256iS
This looks pretty good, but 256i is big…

n

i = 0

s.charAt(i) * 31iS
Java uses:n

i = 0

€

s.charAt(i) * 31(n− i−1)
i= 0

n

∑

Hashtables: O(1) operations?
• How long does it take to compute a String’s

hashCode?
• O(s.length())

• Given an object’s hash code, how long does it
take to find that object?
• O(run length) or O(chain length) PLUS cost of

.equals() method

• Conclusion: for a good hash function (fast,
uniformly distributed) and a low load factor
(short runs/chains), we say hashtables are O(1)

put get space

unsorted vector O(n) O(n) O(n)

unsorted list O(n) O(n) O(n)

sorted vector O(n) O(log n) O(n)

balanced BST O(log n) O(log n) O(n)

array indexed by key O(1) O(1) O(key range)

Summary

