
3

• Graphs

• Reachability

• Graph Coloring

• Lab10

Today’s Outline

4

Graphs Describe the World

7

Distance in Undirected Graphs

• Def: The distance between two vertices u and v

in an undirected graph G=(V,E) is

• the minimum of the path lengths over all u-v paths.

• the depth of u in Tv : a BFS tree from v

• We write it as d(u,v). It satisfies the properties

• d(u,u) = 0, for all u∈ V

• d(u,v) = d(v,u), for all u,v∈ V

• d(u,v) ≤ d(u,w) + d(w,v), for all u,v,w∈ V

8

Testing Connectedness

• How can we determine whether G is

connected?

Portland

Dallas Atlanta

Seattle

SF

LA

Denver Chicago

NY

Boston

9

10

Reachability: Breadth-First

Search
BFS(G, v) // Do a breadth-first search of G starting at v

11

BFS Reflections

• The BFS algorithm traced out a tree Tv: the

edges connecting a visited vertex to (as

yet) unvisited neighbors

• Tv is called a BFS tree of G with root v (or

from v)

• The vertices of Tv are visited in level-order

• This reveals a natural measure of distance

between vertices: the length of (any)

shortest path between the vertices

13

DFS Reflections

• The DFS algorithm traced out a tree different from

that produced by BFS

• It still consists of the edges connecting a visited vertex

to (as yet) unvisited neighbors

• It is called a DFS tree of G with root v (or from v)

• Vertices are visited in pre-order w.r.t. the tree

• By manipulating the stack differently, we could

produce a post-order version of DFS

• And perhaps write DFS recursively….

14

Pre-Order Iterator

15

Reachability: Depth-First

Search (Recursive)
DFS(G, v)

20

• Graphs

• Reachability

• Graph Coloring

• Lab10

Today’s Outline

21

Greedy Algorithms

• A greedy algorithm attempts to find a globally

optimum solution to a problem by making locally

optimum (greedy) choices

• Example: Walking in Manhattan

• Example: Graph Coloring

• A (proper) coloring of a graph G=(V,E) is an

assignment of a value (color) to each vertex so

that adjacent vertices get different values (colors)

• Typically one strives to minimize the number of

colors used

22

Graph Coloring Example

23

Greedy Coloring : Math
Here’s a greedy coloring algorithm for coloring G

Build a collection C = {C1, …, Ck} (set of set of vertices)

i = 0; V= all vertices in G; Ci = {} // empty set

while V is has more vertices

for each vertex u in V

if u is not adjacent to any vertex of Ci

add u to Ci

add Ci to C

remove all vertices of Ci from V

i++;

Return C as the coloring

27

• Graphs

• Reachability

• Graph Coloring

• Lab10

Today’s Outline

28

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that

• No student has two exams in the same slot

• Every course is in a slot

• The number of slots is as small as possible

This is just the graph coloring problem in disguise!

• Each course is a vertex

• Two vertices are adjacent if the courses share

students

• A slot must be an independent set of vertices (that

is, a color class)

30

Lab 10 Notes: Using Graphs

• Create a new graph in structure5

• GraphListDirected, GraphListUndirected,

• GraphMatrixDirected, GraphMatrixUndirected

31

Lab 11 : Useful Graph Methods
• void add(V label)

• add vertex to graph

• void addEdge(V vtx1, V vtx2, E label)

• add edge between vtx1 and vtx2
• Iterator<V> neighbors(V vtx1)

• Get iterator for all neighbors to vtx1
• boolean isEmpty()

• Returns true iff graph is empty
• Iterator<V> iterator()

• Get vertex iterator
• V remove(V label)

• Remove a vertex from the graph
• E removeEdge(V vLabel1, V vLabel2)

• Remove an edge from graph

