Today's Outline

- Graphs
- Reachability
- Graph Coloring
- Lab10

[TAP] Sum of degrees

- Let $\operatorname{deg}(v)$ be the degree of a vertex v. Is the following statement true?
- For any graph $G=(V, E)$

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

where $|E|$ is the number of edges in G

$$
\bigcap_{\Omega(1)}^{\operatorname{indy}} \operatorname{dy}(v)=1 \quad(\omega)=1 \quad Q \operatorname{dog}(v)=2
$$

Distance in Undirected Graphs

- Def: The distance between two vertices u and v in an undirected graph $G=(V, E)$ is
- the minimum of the path lengths over all u-v paths.
- the depth of u in T_{v} : a BFS tree from v
- We write it as $d(u, v)$. It satisfies the properties
- $d(u, u)=0$, for all $u \in V$
- $d(u, v)=d(v, u)$, for all $u, v \in V$
- $d(u, v) \leq d(u, w)+d(w, v)$, for all $u, v, w \in V$

Testing Connectedness

- How can we determine whether G is connected? pick a pinat n, sho that all othm varties

Level-Order Tree Traversal

```
public static <E> void levelOrder(BinaryTree<E> root) (
    if (root.isEmpty(0) return;
    // The queue holds nodes for in-order processing
    Queue<BinaryTree<E>> q = new QueueList<BinaryTree<E>>0; (0)
    q.enqueue(root); // put root of tree in queue (2)
    while(|q.isEmpty(0) {
        BinaryTree<E> next = q.dequeue(): (3)
        doSomething(next);
        if(!next.left().isEmpty0) q.enqueue(next.left0);
        if(!next.right().isEmpty(0) q.enqueve(next.right(0);
    }
}
```

Reachability: Breadth-First
Search
DJ s
BFS(G, v) // Do a breadth-first search of G starting at v count $\leqslant 0$
Create a stack $\{$
mark v as visited
Connt+t
enpusere V push s
while X is not empty
cur

for each neighbor u of cur
if u is not visited
murk 4 as visited
Count tl
return what
//compare count to $|V|$ in $G .(i f$ count $==|V|$ then G is connected)

BFS Reflections

- The BFS algorithm traced out a tree T_{v} : the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_{v} is called a BFS tree of G with root v (or from v)
- The vertices of T_{v} are visited in level-order
- This reveals a natural measure of distance between vertices: the length of (any) shortest path between the vertices

DFS Reflections

- The DFS algorithm traced out a tree different from that produced by BFS
- It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
- It is called a DFS tree of G with root v (or from v)
- Vertices are visited in pre-order w.r.t. the tree
- By manipulating the stack differently, we could produce a post-order version of DFS
- And perhaps write DFS recursively....

Tree Traversals protonder in O Prder
public void preorder (BinaryTree t) (if (t.is Empts ()
return;

\}

Reachability: Depth-First Search (Recursive)

DFS(G, v)
Set v as visited
comet +t
for each neighbor u of v
if n is not visited count $t=\operatorname{DFS}(G, u)$
recurs count

Today's Outline

- Graphs
- Reachability

2. Graph Coloring

- Lab10

Greedy Algorithms

- A greedy algorithm attempts to find a globally optimum solution to a problem by making locally optimum (greedy) choices
- Example: Walking in Manhattan
- Example: Graph Coloring
- A (proper) coloring of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is an assignment of a value (color) to each vertex so that adjacent vertices get different values (colors)
- Typically one strives to minimize the number of colors used

Graph Coloring Example

$$
\begin{gathered}
c_{0}=\{a, d\} \\
c_{7}=\{b, c\} \\
c_{2}=\{e\} \\
c_{d} \cup c_{7} \cup c_{2}=V
\end{gathered}
$$

Greedy Coloring : Math

Here's a greedy coloring algorithm for coloring G
gn Build a collection $C=\left\{C_{1}, \ldots, C_{k}\right\}$ (set of set of vertices)
$i=0 ; V=$ all vertices in $\mathrm{G} ; \mathrm{C}_{i}=\{ \} / /$ empty set
while V is has more vertices
for each vertex u in V
if u is not adjacent to any vertex of C_{i}

$$
\text { add } u \text { to } C_{i}
$$

add C_{i} to C
remove all vertices of C_{i} from V i++;
Return C as the coloring

Today's Outline

- Graphs
- Reachability
- Graph Coloring

】 •Lab10

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that

- No student has two exams in the same slot
- Every course is in a slot
- The number of slots is as small as possible This is just the graph coloring problem in disguise!
- Each course is a vertex
- Two vertices are adjacent if the courses share students
- A slot must be an independent set of vertices (that is, a color class)

Lab 10 Notes: Using Graphs

- Create a new graph in structure 5
- GraphListDirected, GraphListUndirected,
- GraphMatrixDirected, GraphMatrixUndirected

Graph $\langle V, E\rangle g=$ hew Graph hist Undiratel $\langle V, E\rangle(\cdot)$;

Lab 11 : Useful Graph Methods

- void add(V label)
- add vertex to graph
- void addEdge(V vtx1, V vtx2, E label)
- add edge between vtx1 and vtx2
- Iterator<V> neighbors(V vtx1)
- Get iterator for all neighbors to vtx1
- boolean isEmpty()
- Returns true iff graph is empty
- Iterator<V> iterator()
- Get vertex iterator
- V remove (V label)
- Remove a vertex from the graph
- E removeEdge (V vLabel1, V vLabel2)
- Remove an edge from graph

