Today's Outline

« Graphs
» - Reachability
« Graph Coloring
- Labl10

[TAP] Sum of degrees

+ Let deg(v) be the degree of a vertex v. Is
the following statement true?

* Foranygraph G = (V,E)

D deg(n)=2|E|

vl
where |E| is the number of edgesin G
T

Distance In Undirected Graphs

« Def: The distance between two vertices u and v
In an undirected graph G=(V,E) Is
* the minimum of the path lengths over all u-v paths.
* the depthofuinT,: a BFS tree from v

* We write it as d(u,v). It satisfies the properties
* d(u,u) =0, forallueVv

O\Sch . \'\{

e d(u,v) =d(v,u), foralluveV {‘((""3(e)

L < d(u,v) =d(u,w) + d(w,v), for all u,v,weV
2‘91 PR
2

2?/"\'0 \°M, C \ L /N"}\ R

RN o o
- < \'\hci»zzmceyxw)"\ LT BES thee

Testing Connectedness

« How can we determine whether G Is

2 e w e w s e @\l M vati
connected” P i B
I
Portland r =callle B.Qs.]Pn
SF De%ver Chicggo
LA. $ NY&

Dallas Atlanta

Level-Order Tree Traversal

public static <E> void lewvelOrder(BinaryTree<E> root) |
if (root.isEmpty()) return;

/f The gueus holds nodes for in-order processing
gueune<BinaryTree<E>> g = new Queuelist<BinaryTree<E>>(}: O
g.engueue (root); // put root of tree in queue ()

while (!qg.is5Empty ()}) |
BinaryTree<E> next = q‘daqueuei}:<)
doSomething {next);
if('next.left().isEmpty()) g.engueue (next.left{)); i]

if('next.right () .isEmpty{}} g.engueue (next.right{}};

Reachability: Breadth-First

Search
DFS
BFS(G,v) // Do a breadth-first search of G starting at v
urlﬁb ook S
%\vk vV &6; VRIS [V _/
Coardt—
W \V ,
putl g
le X is wet Q)“%% &
(- PA“?P;ET—* v

v-CW asha V\’JK%ALDL “ o‘F AV

Ew s kvt
Ml‘ wW ey \/(s:'bb!
Cout+ 4
ot U
Pus
Fefeym Ot ‘ >
e S e (4 ket e s o)

BFS Reflections

- The BFS algorithm traced out a tree T,: the
edges connecting a visited vertex to (as
yet) unvisited neighbors

« T, Is called a BFS tree of G with root v (or
from v)

» The vertices of T, are visited in level-order

» This reveals a natural measure of distance
between vertices: the length of (any)
shortest path between the vertices

11

DFS Reflections

The DFS algorithm traced out a tree different from
that produced by BFS

» [t still consists of the edges connecting a visited vertex
to (as yet) unvisited neighbors

It is called a DFS tree of G with root v (or from v)
Vertices are visited in pre-order w.r.t. the tree

By manipulating the stack differently, we could
produce a post-order version of DFS

And perhaps write DFS recursively....

13

Tree Traversals

prat Ovaborn .
W Hhae
public void preOrder (BinaryTree t) |

(1 isEegly O)

Fetuwa j

{Ln{uhci-tx"h}ft 11':
‘P-I-—-..D*‘J#—{{.Ll‘nt ()
?m_[jl...lhﬂ,;..- Cx -1-"!;‘1-1"'5,'!'.!",

Reachability: Depth-First
Search (Recursive)

DFS(G, v)
Set V @ isited

15

Today's Outline

« Graphs
* Reachability
» ¢ Graph Coloring
- Labl10

20

Greedy Algorithms

* A greedy algorithm attempts to find a globally
optimum solution to a problem by making locally
optimum (greedy) choices

- Example: Walking in Manhattan
- Example: Graph Coloring
* A (proper) coloring of a graph G=(V, E) Is an
assignment of a value (color) to each vertex so
that adjacent vertices get different values (colors)

« Typically one strives to minimize the number of
colors used

21

Graph Coloring Example

% % 2
@ ’@

Co: C(ﬁjo(}
Gy=4h o)

Cy: [2))

22

Greedy Coloring : Math

Here’s a greedy coloring algorithm for coloring G
2”Build a collection C = {C,, ..., C/} (set of set of vertices)
i =0; V=all vertices in G; C; = {} // empty set
while V' is has more vertices
for each vertex uin V
if uis not adjacent to any vertex of C,

add uto C,
add C;to C
remove all vertices of C, from V
[++:

)

Return C as the coloring

23

Today's Outline

« Graphs

* Reachability

« Graph Coloring
» - Lablo

27

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that
* No student has two exams in the same slot

« Every course is in a slot

* The number of slots is as small as possible

This is just the graph coloring problem in disguise!

- Each course is a vertex

» Two vertices are adjacent if the courses share
students

A slot must be an independent set of vertices (that
IS, a color class)

28

Lab 10 Notes: Using Graphs

» Create a new graphi r”ufmreﬁw
- GraphListDirected, GraphListUndirected;

« GraphMatrixDirected, GraphMatrixUndirected

G('YL“@\" V> = Mo éT,ﬁoLUiUwUmM(VJE>C>;

30

Lab 11 : Useful Graph Methods

vold add(V label)
* add vertex to graph
void addEdge (V vtxl, V vtx2, E label)

» add edge between vtx1 and vtx2
Iterator<V> neighbors (V vtxl)

« Get iterator for all neighbors to vtx1
boolean 1sEmpty ()

* Returns true iff graph is empty
Tterator<V> iterator ()

« (Get vertex iterator
V remove (V label)

* Remove a vertex from the graph
E removeEdge (V vLabell, V vLabel?2)

 Remove an edge from graph

31

