CSCI 136

Data Structures \&
 Advanced Programming

Lecture 30
Spring 2018
Instructors: Bill Jon

Last Time

- Introduction To Graphs
- Definitions and Properties: Undirected Graphs
- Small Proofs
- Reachability

Today's Outline

- Graphs in Structure5
- Graph Interface
- Using the Graph interface to implement graph algorithms:
- BFS + DFS
- Lab IO Preview: Graph Co oring to schedule exams

Graphs in Structure5

- Implementation involves a number of design decisions, depending on intended uses
- What kinds of graphs will be available?
- Undirected, directed, mixed
- What underlying data structures will be used?
- What functionality will be provided?
- What aspects will be public/protected/private
- We'll focus on popular implementations for undirected and directed graphs (separately)

Graphs in structure5

- We want to store information at vertices and at edges, but we favor vertices
- Let V and E represent the types of information held by vertices and edges respectively
- Interface Graph<V,E> extends Structure<V>
- Vertices are the building blocks; edges depend on them
- Type V holds a label for a (hidden) vertex
- Type E holds a label for an (available) edge
- Label: Application-specific data for a vertex/edge

Graphs in structure5

- So, the methods described in the Structure interface are about vertices (but also impact edges: e.g., clear ())
- We'll want to add a number of similar methods to provide information about edges, and the graph itself
- Ultimately the Structure interface is a subset of the total functionality in the graph classes

Recall: Desired Functionality

- What are the basic operations we need in order to describe algorithms on graphs?
- Given vertices u and v : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v? ($\operatorname{deg}(\mathrm{v})$)
- The vertices adjacent to v are called its neighbors
- Get a list of the neighbors of v (or the edges incident with v)

Graph Interface Methods

- void add(V vLabel), V remove(V vLabel)
- Add/remove vertex to graph
- void addEdge(V vLabell, V vLabel2, E edgeLabel),

E removeEdge(V vLabell, V vLabel2)

- Add/remove edge between vLabell and vLabel2
- boolean containsEdge(V vLabell, V vLabel2)
- Returns true iff there is an edge between vLabell and vLabel2
- Edge<V,E> getEdge(V vLabell, V vLabel2)
- Returns edge between vLabell and vLabel2
- void clear()
- Remove all nodes (and edges) from graph

Graph Interface Methods

- boolean visit(V vLabel)
- Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
- Mark edge as "visited"
- boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)
- Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vLabel)
- Get iterator for all neighbors of vLabel
- For directed graphs, out-edges only
- Iterator<V> iterator()
- Get vertex iterator
- void reset()
- Remove visited flags for all nodes/edges

Representing Graphs

- Two standard approaches
- Option I: Array-based (directed and undirected)
- Option 2: List-based (directed and undirected)
- We'll look at both
- Array-based graphs store the edge information in a 2 dimensional array indexed by the vertices
- List-based graphs store the edge information in a (Idimensional) array of lists
- The array is indexed by the vertices
- Each array element is a list of edges incident with that vertex

Example Graph Representations:

 Lists and Matrices| | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0 | I | I | 0 | 0 | 0 | I | I |
| B | I | 0 | I | I | 0 | 0 | I | I |
| C | I | I | 0 | I | 0 | I | 0 | 0 |
| D | 0 | I | I | 0 | I | I | 0 | 0 |
| E | 0 | 0 | 0 | I | 0 | 0 | 0 | I |
| F | 0 | 0 | I | I | 0 | 0 | I | 0 |
| G | I | I | 0 | 0 | 0 | I | 0 | 0 |
| H | I | I | 0 | 0 | I | 0 | 0 | 0 |

Graph Classes in structure5

Interface
Abstract Class
Class

Edge Class

- Graph edges are defined in their own public class (vertices are hidden: referenced only by their label)
- Edge<V,E>(V vLabel1, V vLabel2,
E label, boolean directed)
- Construct a (possibly directed) edge between two labeled vertices (vLabel1 \rightarrow vLabel2)
- vLabell : here; vLabel2 : there
- Useful Edge methods (getters and setters):

```
label(), here(), there()
setLabel(), isVisited(), isDirected()
```


Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
// post: return number of visited vertices
count $\leftarrow 0$;
Create empty queue Q ;
add v to Q, mark v as visited, add ' v ' to count
While Q isn't empty
current \leftarrow Q.dequeue();
for each unvisited neighbor u of current : add u to Q, mark u as visited, add ' u ' to count
return count;

Breadth-First Search

```
int BFS(Graph<V,E> g, V src) {
    int count = 0; Queue<V> todo = new QueueList<V>();
    todo.enqueue(src);
    g.visit(src); count++;
    while (!todo.isEmpty()) {
        V vertex = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(vertex);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next)) {
                todo.enqueue(next);
                g.visit(next); count++;
            }
        }
    }
    return count;
}
```


Breadth-First Search of Edges

```
int BFS(Graph<V,E> g, V src) {
    int count = 0; Queue<V> todo = new QueueList<V>();
    todo.enqueue(src);
    g.visit(src); count++;
while (!todo.isEmpty()) {
        V vertex = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(vertex);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisitedEdge(vertex, next))
                    g.visitEdge(vertex, next);
            if (!g.isVisited(next)) {
                todo.enqueue(next);
                g.visit(next); count++;
            }
        }
    }
return count;
}
```


Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count=1;
for each unvisited neighbor u of v :
count += DFS(G,u);
return count;

How does this translate to code?

Recursive Depth-First Search

```
int depthFirstSearch(Graph<V,E> g, V src) {
        g.visit(src);
        int count = 1;
        Iterator<V> neighbors = g.neighbors(src);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next))
                        count += depthFirstSearch(g, next);
        }
    return count;
}
```


Lab 10 Overview:

 Graph Algorithms using structure5
Greedy Algorithms

- A greedy algorithm attempts to find a globally optimum solution to a problem by making locally optimum (greedy) choices
- Example: Walking in Manhattan
- Example: Graph Coloring
- A (proper) coloring of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is an assignment of a value (color) to each vertex so that adjacent vertices get different values (colors)
- Typically one strives to minimize the number of colors used

Graph Coloring Example

Greedy Coloring : Math

Here's a greedy coloring algorithm
Build a collection $C=\left\{C_{1}, \ldots, C_{k}\right\}$ of sets of vertices
$i=0 ; C_{i}=\{ \} / /$ empty set
while G is has more vertices
for each vertex u in G
if u is not adjacent to any vertex of C_{i}
remove u from G and add u to C_{i}
add C_{i} to C i++;
Return C as the coloring

Greedy Coloring : CS

Here's a greedy coloring algorithm
Create a structure C to hold a collection of lists
while G is not empty
pick a vertex v in G; create an empty list $L ;$ add v to L for each vertex $u \neq v$ in G
if u is not adjacent to any vertex of L

$$
\operatorname{add} u \text { to } L
$$

remove all vertices of L from G
add L to C
Return C as the coloring

Greedy Coloring

Greedy Coloring

Some observations

- Each list (color class) L is a set of vertices, no two of which are adjacent (an independent set)
- Each color class is maximal: cannot be made any larger
- The hope is that this results in fewer colors being needed
- But the solution is not always optimum!
- This is a very hard problem
- The coloring problem is the same as finding a partition of the vertex set into independent sets
- Partition means union of disjoint sets

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that

- No student has two exams in the same slot
- Every course is in a slot
- The number of slots is as small as possible

This is just the graph coloring problem in disguise!

- Each course is a vertex
- Two vertices are adjacent if the courses share students
- A slot must be an independent set of vertices (that is, a color class)

Lab IO Notes: Using Graphs

- Create a new graph in structure5
- GraphListDirected, GraphListUndirected,
- GraphMatrixDirected, GraphMatrixUndirected
- Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

Lab 0 : Useful Giaph Methods

- void add(V label)
- add vertex to graph
- void addEdge(V vtx1, V vtx2, E label)
- add edge between vtxI and vtx2
- Iterator<V> neighbors(V vtx1)
- Get iterator for all neighbors to vtxl
- boolean isEmpty()
- Returns true iff graph is empty
- Iterator<V> iterator()
- Get vertex iterator
- V remove(V label)
- Remove a vertex from the graph
- E removeEdge(V vLabel1, V vLabel2)
- Remove an edge from graph

