CSCI 136 Data Structures & Advanced Programming

Lecture 30 Spring 2018 Instructors: Bill → Jon

Last Time

- Introduction To Graphs
 - Definitions and Properties: Undirected Graphs
 - Small Proofs
 - Reachability

Today's Outline

- Graphs in Structure5
 - Graph Interface
- Using the Graph interface to implement graph algorithms:
 - BFS + DFS
- Lab 10 Preview: Graph Coloring to schedule exams

Graphs in Structure5

- Implementation involves a number of design decisions, depending on intended uses
 - What kinds of graphs will be available?
 - Undirected, directed, mixed
 - What underlying data structures will be used?
 - What functionality will be provided?
 - What aspects will be public/protected/private
- We'll focus on popular implementations for undirected and directed graphs (separately)

Graphs in structure5

- We want to store information at vertices and at edges, but we favor vertices
 - Let V and E represent the types of information held by vertices and edges respectively
 - Interface Graph<V,E> extends Structure<V>
 - Vertices are the building blocks; edges depend on them
- Type V holds a *label* for a (hidden) vertex
- Type E holds a *label* for an (available) edge
 - Label: Application-specific data for a vertex/edge

Graphs in structure5

- So, the methods described in the Structure interface are about vertices (but also impact edges: e.g., clear())
- We'll want to add a number of similar methods to provide information about edges, and the graph itself
 - Ultimately the Structure interface is a subset of the total functionality in the graph classes

Recall: Desired Functionality

- What are the basic operations we need in order to describe algorithms on graphs?
 - Given vertices u and v: are they adjacent?
 - Given vertex v and edge e, are they incident?
 - Given an edge e, get its incident vertices (ends)
 - How many vertices are adjacent to v? (deg(v))
 - The vertices adjacent to v are called its *neighbors*
 - Get a list of the neighbors of v (or the edges incident with v)

Graph Interface Methods

- void add(V vLabel), V remove(V vLabel)
 - Add/remove vertex to graph
- void addEdge(V vLabel1, V vLabel2, E edgeLabel),

E removeEdge(V vLabel1, V vLabel2)

- Add/remove edge between vLabel1 and vLabel2
- boolean containsEdge(V vLabel1, V vLabel2)
 - Returns true iff there is an edge between vLabel1 and vLabel2
- Edge<V,E> getEdge(V vLabel1, V vLabel2)
 - Returns edge between vLabel1 and vLabel2
- void clear()
 - Remove all nodes (and edges) from graph

Graph Interface Methods

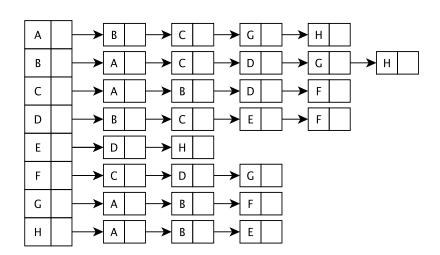
- boolean visit(V vLabel)
 - Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
 - Mark edge as "visited"
- boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)
 - Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vLabel)
 - Get iterator for all neighbors of vLabel
 - For directed graphs, out-edges only
- Iterator<V> iterator()
 - Get vertex iterator
- void reset()
 - Remove visited flags for all nodes/edges

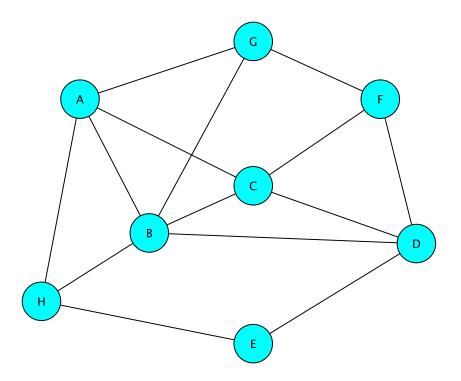
Representing Graphs

- Two standard approaches
 - Option I: Array-based (directed and undirected)
 - Option 2: List-based (directed and undirected)
- We'll look at both
 - Array-based graphs store the edge information in a 2dimensional array indexed by the vertices
 - List-based graphs store the edge information in a (1dimensional) array of lists
 - The array is indexed by the vertices
 - Each array element is a list of edges incident with that vertex

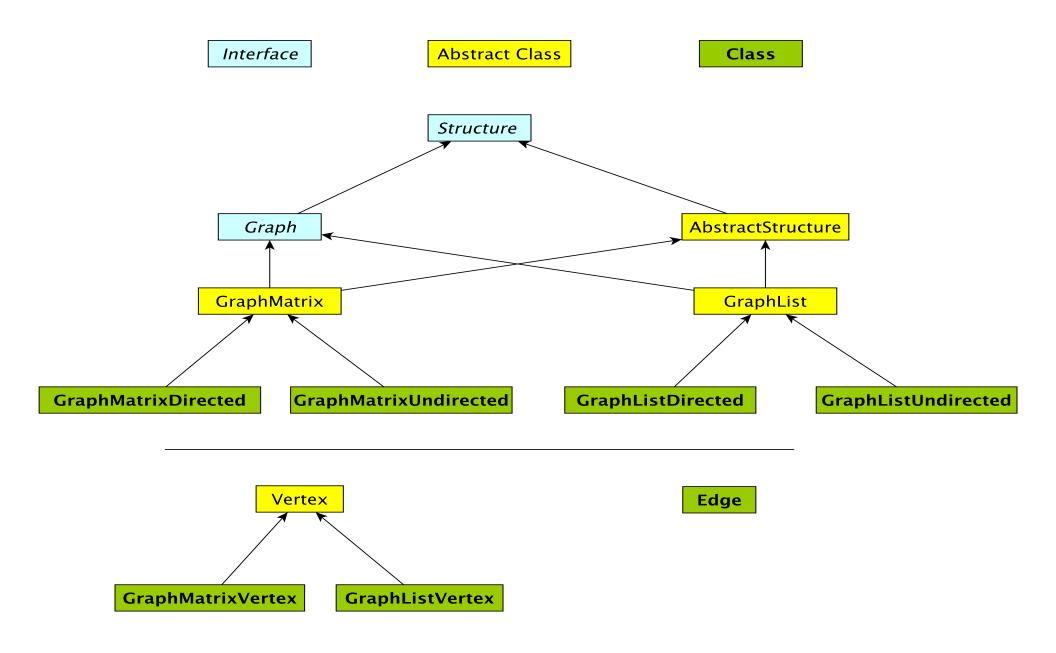
Example Graph Representations: Lists and Matrices

	Α	В	С	D	Ε	F	G	Н
Α	0	Ι		0	0	0	I	Ι
В	I	0	-		0	0		Ι
С	I	I	0		0	_	0	0
D	0	Ι	Ι	0	Ι	Ι	0	0
Ε	0	0	0	Ι	0	0	0	Ι
F	0	0	I	Ι	0	0	I	0
G	Ι	I	0	0	0	Ι	0	0
Н	I	I	0	0	I	0	0	0





Graph Classes in structure5



Edge Class

- Graph edges are defined in their own public class (vertices are hidden: referenced only by their label)
 - Edge<V,E>(V vLabel1, V vLabel2, E label, boolean directed)
 - Construct a (possibly directed) edge between two labeled vertices (vLabel1 → vLabel2)
 - vLabel1 : here; vLabel2 : there
- Useful Edge methods (getters and setters):
 label(), here(), there()
 setLabel(), isVisited(), isDirected()

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited

// post: return number of visited vertices

count $\leftarrow 0$;

Create empty queue Q;

add v to Q, mark v as visited, add 'v' to count

While Q isn't empty

current \leftarrow Q.dequeue();

for each unvisited neighbor u of current :

add u to Q, mark u as visited, add 'u' to count

return count;

How does this translate to code?

Breadth-First Search

```
int BFS(Graph<V,E> g, V src) {
  int count = 0; Queue<V> todo = new QueueList<V>();
  todo.enqueue(src);
  g.visit(src); count++;
 while (!todo.isEmpty()) {
   V vertex = todo.dequeue();
    Iterator<V> neighbors = g.neighbors(vertex);
   while (neighbors.hasNext()) {
      V next = neighbors.next();
       if (!g.isVisited(next)) {
          todo.enqueue(next);
          q.visit(next); count++;
       }
    }
  }
  return count;
```

}

Breadth-First Search of Edges

```
int BFS(Graph<V,E> g, V src) {
  int count = 0; Queue<V> todo = new QueueList<V>();
  todo.enqueue(src);
  g.visit(src); count++;
  while (!todo.isEmpty()) {
   V vertex = todo.dequeue();
    Iterator<V> neighbors = g.neighbors(vertex);
   while (neighbors.hasNext()) {
      V next = neighbors.next();
       if (!g.isVisitedEdge(vertex, next))
             q.visitEdge(vertex, next);
       if (!g.isVisited(next)) {
          todo.enqueue(next);
          q.visit(next); count++;
       }
    }
  }
  return count;
```

}

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count=1;
for each unvisited neighbor u of v:
 count += DFS(G,u);
return count;

How does this translate to code?

Recursive Depth-First Search

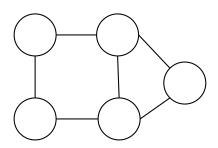
```
int depthFirstSearch(Graph<V,E> g, V src) {
    g.visit(src);
    int count = 1;
    Iterator<V> neighbors = g.neighbors(src);
    while (neighbors.hasNext()) {
        V next = neighbors.next();
        if (!g.isVisited(next))
            count += depthFirstSearch(g, next);
        }
    return count;
}
```

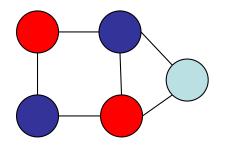
Lab 10 Overview: Graph Algorithms using structure5

Greedy Algorithms

- A greedy algorithm attempts to find a globally optimum solution to a problem by making locally optimum (greedy) choices
- Example: Walking in Manhattan
- Example: Graph Coloring
 - A (proper) coloring of a graph G=(V, E) is an assignment of a value (color) to each vertex so that adjacent vertices get different values (colors)
 - Typically one strives to minimize the number of colors used

Graph Coloring Example





Greedy Coloring : Math

Here's a greedy coloring algorithm Build a collection $C = \{C_1, ..., C_k\}$ of sets of vertices $i = 0; C_i = \{\} // \text{ empty set}$ while G is has more vertices for each vertex *u* in G if u is not adjacent to any vertex of C_i remove *u* from *G* and add *u* to C_i add C_i to C *į*++: Return C as the coloring

Greedy Coloring : CS

Here's a greedy coloring algorithm

Create a structure C to hold a collection of lists

while G is not empty

pick a vertex v in G; create an empty list L; add v to L

for each vertex $u \neq v$ in *G*

if *u* is not adjacent to any vertex of *L*

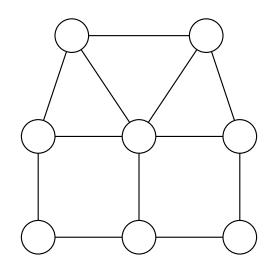
add *u* to *L*

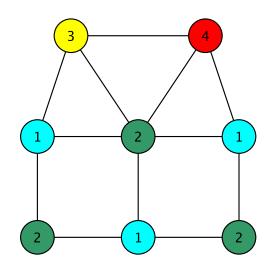
remove all vertices of *L* from *G*

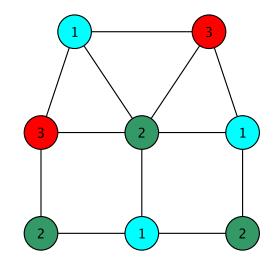
add *L* to *C*

Return C as the coloring

Greedy Coloring







Greedy Coloring

Some observations

- Each list (color class) L is a set of vertices, no two of which are adjacent (an *independent set*)
- Each color class is maximal: cannot be made any larger
 - The hope is that this results in fewer colors being needed
 - But the solution is not always optimum!
 - This is a very hard problem
- The coloring problem is the same as finding a *partition* of the vertex set into independent sets
 - Partition means union of disjoint sets

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that

- No student has two exams in the same slot
- Every course is in a slot
- The number of slots is as small as possible
- This is just the graph coloring problem in disguise!
- Each course is a vertex
- Two vertices are adjacent if the courses share students
- A slot must be an independent set of vertices (that is, a color class)

Lab 10 Notes: Using Graphs

- Create a new graph in structure5
 - GraphListDirected, GraphListUndirected,
 - GraphMatrixDirected, GraphMatrixUndirected
- Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

Lab 10: Useful Graph Methods

- void add(V label)
 - add vertex to graph
- void addEdge(V vtx1, V vtx2, E label)
 - add edge between vtx1 and vtx2
- Iterator<V> neighbors(V vtx1)
 - Get iterator for all neighbors to vtx l
- boolean isEmpty()
 - Returns true iff graph is empty
- Iterator<V> iterator()
 - Get vertex iterator
- V remove(V label)
 - Remove a vertex from the graph
- E removeEdge(V vLabel1, V vLabel2)
 - Remove an edge from graph