
CSCI 136
Data Structures &

Advanced Programming

Lecture 30
Spring 2018

Instructors: Bill Jon

2

Last Time

• Introduction To Graphs
• Definitions and Properties: Undirected Graphs
• Small Proofs
• Reachability

3

• Graphs in Structure5
• Graph Interface

• Using the Graph interface to implement graph
algorithms:
• BFS + DFS

• Lab 10 Preview: Graph Coloring to schedule
exams

Today’s Outline

4

Graphs in Structure5

• Implementation involves a number of design
decisions, depending on intended uses
• What kinds of graphs will be available?

• Undirected, directed, mixed

• What underlying data structures will be used?
• What functionality will be provided?
• What aspects will be public/protected/private

• We’ll focus on popular implementations for
undirected and directed graphs (separately)

5

Graphs in structure5

• We want to store information at vertices and
at edges, but we favor vertices
• Let V and E represent the types of information

held by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex
• Type E holds a label for an (available) edge
• Label: Application-specific data for a vertex/edge

6

Graphs in structure5

• So, the methods described in the Structure
interface are about vertices (but also impact
edges: e.g., clear())

• We’ll want to add a number of similar
methods to provide information about edges,
and the graph itself
• Ultimately the Structure interface is a subset

of the total functionality in the graph classes

7

Recall: Desired Functionality

• What are the basic operations we need in
order to describe algorithms on graphs?
• Given vertices u and v: are they adjacent?
• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (deg(v))

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges
incident with v)

8

Graph Interface Methods
• void add(V vLabel), V remove(V vLabel)

• Add/remove vertex to graph

• void addEdge(V vLabel1, V vLabel2, E edgeLabel),

E removeEdge(V vLabel1, V vLabel2)

• Add/remove edge between vLabel1 and vLabel2

• boolean containsEdge(V vLabel1, V vLabel2)

• Returns true iff there is an edge between vLabel1 and vLabel2

• Edge<V,E> getEdge(V vLabel1, V vLabel2)

• Returns edge between vLabel1 and vLabel2

• void clear()

• Remove all nodes (and edges) from graph

9

Graph Interface Methods
• boolean visit(V vLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”
• boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)

• Returns true iff vertex/edge has been visited
• Iterator<V> neighbors(V vLabel)

• Get iterator for all neighbors of vLabel
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges

10

Representing Graphs
• Two standard approaches

• Option 1: Array-based (directed and undirected)
• Option 2: List-based (directed and undirected)

• We’ll look at both
• Array-based graphs store the edge information in a 2-

dimensional array indexed by the vertices
• List-based graphs store the edge information in a (1-

dimensional) array of lists
• The array is indexed by the vertices
• Each array element is a list of edges incident with that vertex

11

Example Graph Representations:
Lists and Matrices

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

12

Graph Classes in structure5

13

Edge Class

• Graph edges are defined in their own public class
(vertices are hidden: referenced only by their label)
• Edge<V,E>(V vLabel1, V vLabel2,

E label, boolean directed)
• Construct a (possibly directed) edge between two labeled

vertices (vLabel1 à vLabel2)

• vLabel1 : here; vLabel2 : there

• Useful Edge methods (getters and setters):
label(), here(), there()
setLabel(), isVisited(), isDirected()

14

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
// post: return number of visited vertices
count ß0;
Create empty queue Q;
add v to Q, mark v as visited, add ‘v’ to count
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q, mark u as visited, add ‘u’ to count
return count;

How does this translate to code?

15

Breadth-First Search
int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
Iterator<V> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

todo.enqueue(next);
g.visit(next); count++;

}
}

}
return count;

}

16

Breadth-First Search of Edges
int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
Iterator<V> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(vertex, next))

g.visitEdge(vertex, next);
if (!g.isVisited(next)) {

todo.enqueue(next);
g.visit(next); count++;

}
}

}
return count;

}

17

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count=1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

How does this translate to code?

18

Recursive Depth-First Search
int depthFirstSearch(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next))

count += depthFirstSearch(g, next);
}

return count;
}

19

Lab 10 Overview:
Graph Algorithms using structure5

20

Greedy Algorithms

• A greedy algorithm attempts to find a globally optimum
solution to a problem by making locally optimum
(greedy) choices

• Example: Walking in Manhattan
• Example: Graph Coloring
• A (proper) coloring of a graph G=(V,E) is an

assignment of a value (color) to each vertex so that
adjacent vertices get different values (colors)

• Typically one strives to minimize the number of colors
used

21

Graph Coloring Example

22

Greedy Coloring : Math
Here’s a greedy coloring algorithm

Build a collection C = {C1, …, Ck} of sets of vertices
i = 0; Ci = {} // empty set
while G is has more vertices

for each vertex u in G
if u is not adjacent to any vertex of Ci

remove u from G and add u to Ci

add Ci to C
i++;

Return C as the coloring

23

Greedy Coloring : CS
Here’s a greedy coloring algorithm

Create a structure C to hold a collection of lists
while G is not empty

pick a vertex v in G; create an empty list L; add v to L
for each vertex u ≠ v in G

if u is not adjacent to any vertex of L
add u to L

remove all vertices of L from G
add L to C

Return C as the coloring

24

Greedy Coloring

25

Greedy Coloring

Some observations
• Each list (color class) L is a set of vertices, no two of

which are adjacent (an independent set)
• Each color class is maximal: cannot be made any larger

• The hope is that this results in fewer colors being needed
• But the solution is not always optimum!
• This is a very hard problem

• The coloring problem is the same as finding a partition of
the vertex set into independent sets
• Partition means union of disjoint sets

26

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that
• No student has two exams in the same slot
• Every course is in a slot
• The number of slots is as small as possible
This is just the graph coloring problem in disguise!
• Each course is a vertex
• Two vertices are adjacent if the courses share students
• A slot must be an independent set of vertices (that is, a

color class)

27

Lab 10 Notes: Using Graphs

• Create a new graph in structure5
• GraphListDirected, GraphListUndirected,
• GraphMatrixDirected, GraphMatrixUndirected

• Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

28

Lab 10 : Useful Graph Methods
• void add(V label)

• add vertex to graph

• void addEdge(V vtx1, V vtx2, E label)
• add edge between vtx1 and vtx2

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors to vtx1

• boolean isEmpty()
• Returns true iff graph is empty

• Iterator<V> iterator()
• Get vertex iterator

• V remove(V label)
• Remove a vertex from the graph

• E removeEdge(V vLabel1, V vLabel2)
• Remove an edge from graph

