## [TAP:CWJXL] Balanced Trees

- Which of the following are not guaranteed to be "balanced"?
A. AVL Tree
B. Red-black Tree
C. Splay Tree
>D. They are all balanced
E. Whatever


## Today's Outline

Graphs

- Undirected Graph
- Directed Graph
- Implementation

Graphs Describe the World
ump of cities
cities, roads
cities, rivers

- Social network
users, following (twitter)
users, friend (facebook)


Nodes = subway stops; Edges = track between stops


Nodes = cities; Edges = rail lines connecting cities


Connections in graph matter, not precise locations of nodes

## Internet (~1972)



## Facebook social network graph



## Wire-Frame Models



## Today's Outline

- Graphs
- Undirected Graph
- Directed Graph
- Implementation


## Undirected Graph



An undirected graph is denoted as $G=(\mathrm{V}, \mathrm{E})$, where

- V: set of vertices $u$ bvaradjuent if these is an edy
- E: set of edges, and each edge is an unordered pair of vertices (we write e $=\{u, v\}$ ) degre $(v)=$ कo edys the sive the to $\%$


## Walking Along a Graph

- A walk from $u$ to $v$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is an alternating sequence of vertices and edges (often, we just write the vertices) cloud $\begin{gathered}\text { walk }\end{gathered}$

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v
$$

such that each $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $i=1, \ldots, k 8$

- A path (trail) is a walk where no edge appears more than once
- A simple path (path) is a walk where no vertex appears more than once



## Reachability and Connectedness

- A vertex $v$ in G is reachable from a vertex $u$ in G if there is a path from $u$ to $v$
- Note, $v$ is reachable from $u$ iff $u$ is reachable from $v$
- An undirected graph $G$ is connected if for every pair of vertices $u, v$ in $G, v$ is reachable from $u$ (and vice versa)
- The set of all vertices reachable from v, along with all edges of $G$ connecting any two of them, is called the connected component of $v_{k}$


## Little Tiny Theorems

- If there is a walk from $u$ to $v$, then $u$
- there is a walk from $v$ to $u$.
- there is a path from $u$ to $v$ (and from
If there is a path from $u$ to $v$, then
- there is a simple path from $u$ to $v(a n d v$ to $u)$


## [TAP] Sum of degrees

- Let $\operatorname{deg}(v)$ be the degree of a vertex $v$. Is the following statement true?
- For any graph $G=(V, E)$

$$
\operatorname{deg}(v)=2|E|
$$

```
v V
```

where $/ E /$ is the number of edges in $G$


## Today's Outline

- Graphs
- Undirected Graph
- Directed Graph
- Implementation


## Directed Graph

## Undirected Graph



An undirected graph is denoted as $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where

- V: set of vertices
- E : set of edges, and each edge is an unordered pair of vertices (we write $e=\{u, v\}$ ) orderel
$\uparrow{ }^{\uparrow}$ tengt/destination

Degrees

out-clyter $=\Delta 1$ of outgoing edges in-deytre $=$ \# of incoming edges

## Walking Along a Graph



The concept of a walk and path is still the same, but you can only walk along the direction of the edges.

## Reachability and Connectedness

- A vertex $v$ in G is reachable from a vertex $u$ in G if there is a path from $u$ to $v$
- Note, v is reachable from u iff u is reachable from $v$ (not necessarily. It's true is $u$ ous $v$ are connitu. An undirected graph G is strinth connected if for muturly pair of vertices $u, v$ in $G, v$ is reachable from $u$
strongly (and vice versa)
connets The set of all vertices reachable from $v$, along with all edges of $G$ connecting any two of them, is called thestronghected component of $v$


## Today's Outline

- Graphs
- Undirected Graph
- Directed Graph

卫. Implementation

## Implementing Graphs

- Involves a number of implementation decisions, depending on intended uses
- What kinds of graphs will be supported?
- Undirected, directed, mixed
- What underlying data structures will be used?
- What functionality will be provided
- What aspects will be public/protected/private


## Graphs in structure5

- Interface Graph<V,E> extends Structure<V>
- Type V holds a label for a vertex
- Type E holds a labêfor an edge
information

$$
\begin{aligned}
& \text { e.5. city name } \\
& \text { distance }
\end{aligned}
$$

## Desired Functionality

- What are the basic operations we need to describe algorithms on graphs?
- Given vertices $u$ and $v$ : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v ? (degree of $v$ )
- The vertices adjacent to $v$ are called its neighbors
- Get a list of the neighbors of $v$ (or the edges incident with v)


## Representing Graphs

- Two standard approaches
- Option 1: Array-based (directed and undirected)
- Option 2: List-based (directed and undirected)


## Adjacency Array: Directed Graph



Entry ( $\mathrm{i}, \mathrm{j}$ ) stores 1 if there is an edge from i to $\mathrm{j} ; 0$ otherwise E.G.: edges $(\mathrm{B}, \mathrm{C})=1$ but edges $(\mathrm{C}, \mathrm{B})=0$

## Adjacency Array: Undirected Graph



Entry (i,j) store 1 if there is an edge between i and j ; else 0 E.G.: edges $(B, C)=1=\operatorname{edges}(C, B)$

## Adjacency Array: Undirected Graph

 Halving the Space (not in structure5)|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 2 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 3 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 5 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| 6 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |


|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 |  | 0 | 1 | 1 | 0 | 0 | 1 |
| 2 |  |  | 0 | 1 | 0 | 1 | 0 |
| 3 |  |  |  | 0 | 1 | 1 | 0 |
| 4 |  |  |  |  | 0 | 0 | 0 |
| 5 |  |  |  |  |  | 0 | 1 |
| 6 |  |  |  |  |  |  | 0 |


| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $\ldots$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |

(i,j) maps to $\mathrm{i}^{\star} 7+\mathrm{j}$

## Adjacency List : Directed Graph



The vertices are stored in an array V[]
V [] contains a linked list of edges having a given source

## Adjacency List : Undirected Graph



The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given vertex

