
[TAP:CWJXL] Balanced Trees

• Which of the following are not guaranteed to be

“balanced”?

A. AVL Tree

B. Red-black Tree

C. Splay Tree

D. They are all balanced

E. Whatever

3

• Graphs

• Undirected Graph

• Directed Graph

• Implementation

Today’s Outline

4

Graphs Describe the World

5

Nodes = subway stops; Edges = track between stops

6

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Nodes = cities; Edges = rail lines connecting cities

7

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Connections in graph matter, not precise locations of nodes

8

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

Internet (~1972)

9

Facebook social network graph

11

Wire-Frame Models

12

• Graphs

• Undirected Graph

• Directed Graph

• Implementation

Today’s Outline

13

Portland

Dallas Atlanta

Seattle

SF

LA

Denver Chicago

NY

Boston

An undirected graph is denoted as G = (V,E), where

• V: set of vertices

• E: set of edges, and each edge is an unordered pair of

vertices (we write e = {u,v})

Undirected Graph

14

Walking Along a Graph

• A walk from u to v in a graph G = (V,E) is

an alternating sequence of vertices and

edges (often, we just write the vertices)

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that each ei = {vi , vi+1} for i = 1, ... , k

• A path (trail) is a walk where no edge appears

more than once

• A simple path (path) is a walk where no vertex

appears more than once

15

Reachability and

Connectedness
• A vertex v in G is reachable from a vertex u in G

if there is a path from u to v

• Note, v is reachable from u iff u is reachable

from v

• An undirected graph G is connected if for every

pair of vertices u, v in G, v is reachable from u

(and vice versa)

• The set of all vertices reachable from v, along

with all edges of G connecting any two of them,

is called the connected component of v

16

Little Tiny Theorems

• If there is a walk from u to v, then

• there is a walk from v to u.

• there is a path from u to v (and from v to u)

• If there is a path from u to v, then

• there is a simple path from u to v (and v to u)

17

[TAP] Sum of degrees

• Let deg(v) be the degree of a vertex v. Is

the following statement true?

• For any graph G = (V,E)

where |E| is the number of edges in G

deg(v)
vÎV

å = 2 |E |

18

• Graphs

• Undirected Graph

• Directed Graph

• Implementation

Today’s Outline

19

Directed Graph

21

Degrees

22

Walking Along a Graph

The concept of a walk and path is still the same, but you

can only walk along the direction of the edges.

24

26

• Graphs

• Undirected Graph

• Directed Graph

• Implementation

Today’s Outline

27

Implementing Graphs

• Involves a number of implementation

decisions, depending on intended uses

• What kinds of graphs will be supported?

• Undirected, directed, mixed

• What underlying data structures will be used?

• What functionality will be provided

• What aspects will be public/protected/private

28

Graphs in structure5

• Interface Graph<V,E> extends

Structure<V>
• Type V holds a label for a vertex

• Type E holds a label for an edge

29

Desired Functionality

• What are the basic operations we need to

describe algorithms on graphs?

• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?

• Given an edge e, get its incident vertices

(ends)

• How many vertices are adjacent to v? (degree

of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges

incident with v)

33

Representing Graphs

• Two standard approaches

• Option 1: Array-based (directed and undirected)

• Option 2: List-based (directed and undirected)

34

Adjacency Array: Directed Graph

Entry (i,j) stores 1 if there is an edge from i to j; 0 otherwise

E.G.: edges(B,C) = 1 but edges(C,B) = 0

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 0 0 0 1 0 0 1 1

C 0 1 0 1 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 1 0 0 0

35

Adjacency Array: Undirected Graph

Entry (i,j) store 1 if there is an edge between i and j; else 0

E.G.: edges(B,C) = 1 = edges(C,B)

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

36

Adjacency Array: Undirected Graph

0 1 2 3 4 5 6

0 0 1 1 0 0 0 1

1 1 0 1 1 0 0 1

2 1 1 0 1 0 1 0

3 0 1 1 0 1 1 0

4 0 0 0 1 0 0 0

5 0 0 1 1 0 0 1

6 1 1 0 0 0 1 0

0 1 2 3 4 5 6

0 0 1 1 0 0 0 1

1 0 1 1 0 0 1

2 0 1 0 1 0

3 0 1 1 0

4 0 0 0

5 0 1

6 0

0 1 2 3 4 5 6 7 8 9 …

0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0

Halving the Space (not in structure5)

(i,j) maps to i*7+j

37

Adjacency List : Directed Graph

The vertices are stored in an array V[]

V[] contains a linked list of edges having a given source

38

Adjacency List : Undirected Graph

The vertices are stored in an array V[]

V[] contains a linked list of edges incident to a given

vertex

