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Last Time

e BSTs

* Balance is important to maintain height (logn)
* AVL Trees

— Rotate left, rotate right
* One of many types of balanced trees

e Game Trees

e Backwards induction



Today’s Outline

* Introduction To Graphs
e Definitions and Properties: Undirected Graphs
e Small Proofs
e Rechability
* Graph Interface in Structure5



Graphs Describe the World!

Transportation Networks
Communication Networks
Social Networks
Molecular structures
Dependency structures
Scheduling

Matching

Graphics Modeling
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Nodes = cities; Edges = rail lines connecting cities



Portland Seattle Boston
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Note: Connections in graph matter, not precise locations of nodes



Internet (~1972)
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Word Game

CORD

WOAD

o e R
‘ 4“

WARD

Nodes = words; Edges = words that differ by exactly one letter

WOLD
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Computer Science Course Prerequisites

136

333

373

4 256 361

339

374 /
375
- Core course

At least one of
{334, 256 Elective
_~
A Required
- ~

A Recommended

326 432 434T

Nodes = courses; Edges = prerequisites ***



Basic Definitions & Concepts

Portland Seattle Boston
Qe —tp ®
e, = {SF, Denver}
SF Denver Chicago
e — ®

Philadelphia

LA Dallas Atlanta \ NY

Definition: An undirected graph G = (V,E) consists of two sets

« V:the vertices of G, and E : the edges of G
 Each edge e in E is defined by a set of two vertices: its
incident vertices.

« We write e = {u,v} and say that u and v are adjacent. .



Basic Definitions & Concepts

Definition: An undirected graph G = (V,E)
consists of two sets:
e V :the vertices of G

* E :the edges of G

Each edge e in E is defined by a set of two vertices: its
incident vertices

We write e={u, v} and say that u and v are adjacent

The degree of a vertex is the number of incident edges
(loops counted twice)



Walking Along a Graph

A walk from u tovina graph G = (V,E) is an
alternating sequence of vertices and edges
U= Vg €, V|5 €, Vay cee s Vi|s € V. = V
such that each e, ={v,, v, }fori=1I, .., k

* (Note a walk starts and ends on a vertex)

* If no edge appears more than once then
the walk is called a path

* If no vertex appears more than once then
the walk is a simple path



Walking In Circles

e A closed walk in a graph G = (V,E) is a walk
VO’ el, VI’ e2’ VZ, cee 9 Vk_l’ ek’ Vk
such that vy = v, (it ends at the starting v)

* A circuit is a path where v, = v,

*Circuit vs. closed walk? Circuit has no repeat edges

* A cycle is a simple path where v, = v,
*Circuit vs. cycle!? Cycle has no repeated vertices.

* The length of any of these is the number of
edges in the sequence



Little Tiny Theorems

e |f there is a walk from u to v, then there is a
walk from v to u.

e |f there is a walk from u to v, then there is a
path from u to v (and from v to u)

* If there is a path from u to v, then there is a
simple path from u to v (and v to u)

* Every circuit through v contains a cycle
through v

* Not every closed walk through v contains a
cycle through v! [Try to find an example!]



A Basic Graph Fact

e Denote the degree of a vertex v by deg(v).
e Theorem: For any graph G = (V,E)

Edeg(v)=2|EI

vevV

where |E| is the number of edges in G

 Proof Hint: Induction on |E |: How does
removing an edge change the equation!?

* Instead: Count pairs (v,e) where v is incident with e



Reachability and Connectedness

* Definition: A vertex v in G is reachable from
a vertex u in G if there is a path from u to v

e v is reachable from u iff u is reachable from v

* Definition: An undirected graph G is
connected if for every pair of vertices (u, v) in
G, v is reachable from u (and vice versa)

* The set of all vertices reachable from v, along

with all edges of G connecting any two of
them, is called the connected component of v



Basic Graph Algorithms

* We'll look at a number of graph algorithms

Connectedness: Is G connected?

* If not, how many connected components does G have!

Cycle testing: Does G contain a cycle?

* Does G contain a cycle through a given vertex!

If the edges of G have costs:

* What is the cheapest subgraph connecting all vertices

— Called a connected, spanning subgraph

* What is a cheapest path from u to v?

And more.... (if not here, then in CSC] 256!)



Testing Connectedness

* How can we determine whether G is
connected!?

* Pick a vertex v; see if every vertex u is reachable
from v
* How could we do this?

* Visit the neighbors of v, then visit their neighbors,
etc. See if you reach all vertices

e (Assume we can mark a vertex as “visited”)

* How do we manage all of this visiting?

20



Reachability: Breadth-First Search

BIES(G, v) /7 Do a breadth-furst search of G starting at v
// pre: all vertices are marked as unvisited
count €< 0;

Create empty queue (); enqueue v; mark v as visited: count++
While Q isn t empty
current < ().dequeue();
Jor each unvisited neighbor u of current :

add u to Q; mark u as visited: count++
relurn count;

Now compare value returned from BFS(G,v) to size of V
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BFS Reflections

The BFS algorithm traced out a tree T,: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

T, is called a BFS tree of G with root v (or from v)
The vertices of T, are visited in level-order

This reveals a natural measure of distance
between vertices: the length of (any) shortest
path between the vertices
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