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Last Time

• BSTs
• Balance is important to maintain height (logn)

• AVL Trees
– Rotate left, rotate right

• One of many types of balanced trees

• Game Trees
• Backwards induction
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Today’s Outline

• Introduction To Graphs
• Definitions and Properties: Undirected Graphs
• Small Proofs
• Rechability
• Graph Interface in Structure5
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Graphs Describe the World1

• Transportation Networks
• Communication Networks
• Social Networks
• Molecular structures
• Dependency structures
• Scheduling
• Matching
• Graphics Modeling
• ....
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Nodes = subway stops;  Edges = subway lines
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Nodes = cities; Edges = rail lines connecting cities
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Note: Connections in graph matter, not precise locations of nodes
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Internet (~1998)
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WORD

CORD

WARD

WOAD

WOLD
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WORE WORK

WORN WORT

Word Game

Nodes = words; Edges = words that differ by exactly one letter
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Nodes = courses; Edges = prerequisites ***
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Definition: An undirected graph G = (V,E) consists of two sets

Basic Definitions & Concepts

• V : the vertices of G, and E : the edges of G
• Each edge e in E is defined by a set of two vertices: its 

incident vertices.
• We write e = {u,v} and say that u and v are adjacent.

e1 = {SF, Denver}
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Basic Definitions & Concepts

• Definition: An undirected graph G = (V,E)
consists of two sets:
• V : the vertices of G
• E : the edges of G

• Each edge e in E is defined by a set of two vertices: its 
incident vertices

• We write e={u,v} and say that u and v are adjacent

• The degree of a vertex is the number of incident edges
(loops counted twice)
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Walking Along a Graph

• A walk from u to v in a graph G = (V,E) is an 
alternating sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that each ei = {vi , vi+1} for i = 1, ... , k
• (Note a walk starts and ends on a vertex)

• If no edge appears more than once then 
the walk is called a path

• If no vertex appears more than once then 
the walk is a simple path
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Walking In Circles

• A closed walk in a graph G = (V,E) is a walk

v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that v0 = vk (it ends at the starting v)

• A circuit is a path where v0 = vk
•Circuit vs. closed walk?

• A cycle is a simple path where v0 = vk
•Circuit vs. cycle?

• The length of any of these is the number of 
edges in the sequence

Circuit has no repeat edges

Cycle has no repeated vertices.
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Little Tiny Theorems

• If there is a walk from u to v, then there is a 
walk from v to u.

• If there is a walk from u to v, then there is a 
path from u to v (and from v to u)

• If there is a path from u to v, then there is a 
simple path from u to v (and v to u)

• Every circuit through v contains a cycle
through v

• Not every closed walk through v contains a 
cycle through v! [Try to find an example!]
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A Basic Graph Fact

• Denote the degree of a vertex v by deg(v).
• Theorem: For any graph G = (V,E)

where |E| is the number of edges in G
• Proof Hint: Induction on |E|: How does 

removing an edge change the equation?
• Instead: Count pairs (v,e) where v is incident with e

deg(v)
v∈V
∑ = 2 | E |
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Reachability and Connectedness

• Definition: A vertex v in G is reachable from 
a vertex u in G if there is a path from u to v
• v is reachable from u iff u is reachable from v

• Definition: An undirected graph G is 
connected if for every pair of vertices (u, v) in 
G, v is reachable from u (and vice versa)

• The set of all vertices reachable from v, along 
with all edges of G connecting any two of 
them, is called the connected component of v
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Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest subgraph connecting all vertices

– Called a connected, spanning subgraph

• What is a cheapest path from u to v?

• And more.... (if not here, then in CSCI 256!)
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Testing Connectedness

• How can we determine whether G is 
connected?
• Pick a vertex v; see if every vertex u is reachable 

from v
• How could we do this?
• Visit the neighbors of v, then visit their neighbors, 

etc.  See if you reach all vertices
• (Assume we can mark a vertex as “visited”)

• How do we manage all of this visiting?
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Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u  of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V
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BFS Reflections

• The BFS algorithm traced out a tree Tv: the 
edges connecting a visited vertex to (as yet) 
unvisited neighbors

• Tv is called a BFS tree of G with root v (or from v)
• The vertices of Tv are visited in level-order

• This reveals a natural measure of distance 
between vertices: the length of (any) shortest 
path between the vertices


