
CSCI 136
Data Structures &

Advanced Programming

Lecture 29
Spring 2018

Instructors: Bill Jon

2

Last Time

• BSTs
• Balance is important to maintain height (logn)

• AVL Trees
– Rotate left, rotate right

• One of many types of balanced trees

• Game Trees
• Backwards induction

3

Today’s Outline

• Introduction To Graphs
• Definitions and Properties: Undirected Graphs
• Small Proofs
• Rechability
• Graph Interface in Structure5

4

Graphs Describe the World1

• Transportation Networks
• Communication Networks
• Social Networks
• Molecular structures
• Dependency structures
• Scheduling
• Matching
• Graphics Modeling
•

5

Nodes = subway stops; Edges = subway lines

6

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Nodes = cities; Edges = rail lines connecting cities

7

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Note: Connections in graph matter, not precise locations of nodes

8

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

Internet (~1972)

9

Internet (~1998)

10

WORD

CORD

WARD

WOAD

WOLD

WOOD

LORDFORD

WORM

WORE WORK

WORN WORT

Word Game

Nodes = words; Edges = words that differ by exactly one letter

11

Nodes = courses; Edges = prerequisites ***

12

Definition: An undirected graph G = (V,E) consists of two sets

Basic Definitions & Concepts

• V : the vertices of G, and E : the edges of G
• Each edge e in E is defined by a set of two vertices: its

incident vertices.
• We write e = {u,v} and say that u and v are adjacent.

e1 = {SF, Denver}

Dallas Atlanta

Seattle

SF

LA

Denver Chicago

NY

BostonPortland

Philadelphia

13

Basic Definitions & Concepts

• Definition: An undirected graph G = (V,E)
consists of two sets:
• V : the vertices of G
• E : the edges of G

• Each edge e in E is defined by a set of two vertices: its
incident vertices

• We write e={u,v} and say that u and v are adjacent

• The degree of a vertex is the number of incident edges
(loops counted twice)

14

Walking Along a Graph

• A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that each ei = {vi , vi+1} for i = 1, ... , k
• (Note a walk starts and ends on a vertex)

• If no edge appears more than once then
the walk is called a path

• If no vertex appears more than once then
the walk is a simple path

15

Walking In Circles

• A closed walk in a graph G = (V,E) is a walk

v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that v0 = vk (it ends at the starting v)

• A circuit is a path where v0 = vk
•Circuit vs. closed walk?

• A cycle is a simple path where v0 = vk
•Circuit vs. cycle?

• The length of any of these is the number of
edges in the sequence

Circuit has no repeat edges

Cycle has no repeated vertices.

16

Little Tiny Theorems

• If there is a walk from u to v, then there is a
walk from v to u.

• If there is a walk from u to v, then there is a
path from u to v (and from v to u)

• If there is a path from u to v, then there is a
simple path from u to v (and v to u)

• Every circuit through v contains a cycle
through v

• Not every closed walk through v contains a
cycle through v! [Try to find an example!]

17

A Basic Graph Fact

• Denote the degree of a vertex v by deg(v).
• Theorem: For any graph G = (V,E)

where |E| is the number of edges in G
• Proof Hint: Induction on |E|: How does

removing an edge change the equation?
• Instead: Count pairs (v,e) where v is incident with e

deg(v)
v∈V
∑ = 2 | E |

18

Reachability and Connectedness

• Definition: A vertex v in G is reachable from
a vertex u in G if there is a path from u to v
• v is reachable from u iff u is reachable from v

• Definition: An undirected graph G is
connected if for every pair of vertices (u, v) in
G, v is reachable from u (and vice versa)

• The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

19

Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest subgraph connecting all vertices

– Called a connected, spanning subgraph

• What is a cheapest path from u to v?

• And more.... (if not here, then in CSCI 256!)

20

Testing Connectedness

• How can we determine whether G is
connected?
• Pick a vertex v; see if every vertex u is reachable

from v
• How could we do this?
• Visit the neighbors of v, then visit their neighbors,

etc. See if you reach all vertices
• (Assume we can mark a vertex as “visited”)

• How do we manage all of this visiting?

21

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

22

BFS Reflections

• The BFS algorithm traced out a tree Tv: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

• Tv is called a BFS tree of G with root v (or from v)
• The vertices of Tv are visited in level-order

• This reveals a natural measure of distance
between vertices: the length of (any) shortest
path between the vertices

