CSCI 136

Data Structures \&
 Advanced Programming

Lecture 29
Spring 2018
Instructors: Bill Jon

Last Time

- BSTs
- Balance is important to maintain height (logn)
- AVL Trees
- Rotate left, rotate right
- One of many types of balanced trees
- Game Trees
- Backwards induction

Today's Outline

- Introduction To Graphs
- Definitions and Properties: Undirected Graphs
- Small Proofs
- Rechability
- Graph Interface in Structure5

Graphs Describe the World ${ }^{1}$

- Transportation Networks
- Communication Networks
- Social Networks
- Molecular structures
- Dependency structures
- Scheduling
- Matching
- Graphics Modeling
....

Nodes = subway stops; Edges = subway lines

Nodes = cities; Edges = rail lines connecting cities

Note: Connections in graph matter, not precise locations of nodes

Internet (~1972)

Internet (~1998)

Word Game

Nodes $=$ words; Edges $=$ words that differ by exactly one letter

Computer Science Course Prerequisites

Nodes $=$ courses; Edges $=$ prerequisites $* * *$

Basic Definitions \& Concepts

Definition: An undirected graph $G=(V, E)$ consists of two sets

- V : the vertices of G, and E : the edges of G
- Each edge e in E is defined by a set of two vertices: its incident vertices.
- We write $\mathrm{e}=\{\mathrm{u}, \mathrm{v}\}$ and say that u and v are adjacent.

Basic Definitions \& Concepts

- Definition: An undirected graph G = (V,E) consists of two sets:
- V : the vertices of G
- E : the edges of G
- Each edge e in E is defined by a set of two vertices: its incident vertices
- We write $e=\{u, v\}$ and say that u and v are adjacent
- The degree of a vertex is the number of incident edges (loops counted twice)

Walking Along a Graph

- A walk from u to v in a graph $G=(V, E)$ is an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v
$$

such that each $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $i=1, \ldots, k$

- (Note a walk starts and ends on a vertex)
- If no edge appears more than once then the walk is called a path
- If no vertex appears more than once then the walk is a simple path

Walking In Circles

- A closed walk in a graph $G=(\mathrm{V}, \mathrm{E})$ is a walk

$$
v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

such that $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ (it ends at the starting v)

- A circuit is a path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
-Circuit vs. closed walk? Circuit has no repeat edges
- A cycle is a simple path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ -Circuit vs. cycle? Cycle has no repeated vertices.
- The length of any of these is the number of edges in the sequence

Little Tiny Theorems

- If there is a walk from u to v, then there is a walk from v to u .
- If there is a walk from u to v, then there is a path from u to v (and from v to u)
- If there is a path from u to v, then there is a simple path from u to $v($ and v to u)
- Every circuit through v contains a cycle through v
- Not every closed walk through v contains a cycle through v ! [Try to find an example!]

A Basic Graph Fact

- Denote the degree of a vertex v by $\operatorname{deg}(v)$.
- Theorem: For any graph $G=(\mathrm{V}, \mathrm{E})$

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

where $|E|$ is the number of edges in G

- Proof Hint: Induction on $|\mathrm{E}|$: How does removing an edge change the equation?
- Instead: Count pairs (v, e) where v is incident with e

Reachability and Connectedness

- Definition: A vertex v in G is reachable from a vertex u in G if there is a path from u to v
- v is reachable from u iff u is reachable from v
- Definition: An undirected graph G is connected if for every pair of vertices (u, v) in G, v is reachable from u (and vice versa)
- The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the connected component of v

Basic Graph Algorithms

- We'll look at a number of graph algorithms
- Connectedness: Is G connected?
- If not, how many connected components does G have?
- Cycle testing: Does G contain a cycle?
- Does G contain a cycle through a given vertex?
- If the edges of G have costs:
- What is the cheapest subgraph connecting all vertices
- Called a connected, spanning subgraph
- What is a cheapest path from u to v ?
- And more.... (if not here, then in CSCI 256!)

Testing Connectedness

- How can we determine whether G is connected?
- Pick a vertex v; see if every vertex u is reachable from v
- How could we do this?
- Visit the neighbors of v , then visit their neighbors, etc. See if you reach all vertices
- (Assume we can mark a vertex as "visited")
- How do we manage all of this visiting?

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited count $\leftarrow 0$;
Create empty queue Q; enqueue v; mark v as visited; count++ While Q isn't empty

$$
\begin{aligned}
& \text { current } \leftarrow \text { Q.dequeue(); } \\
& \text { for each unvisited neighbor u of current : } \\
& \text { add u to Q; mark u as visited; count++ }
\end{aligned}
$$

return count;

Now compare value returned from BFS(G,v) to size of \vee

BFS Reflections

- The BFS algorithm traced out a tree T_{v} : the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_{v} is called a BFS tree of G with root v (or from v)
- The vertices of T_{v} are visited in level-order
- This reveals a natural measure of distance between vertices: the length of (any) shortest path between the vertices

