CSCI 136
Data Structures &
Advanced Programming

Lecture 28
Spring 2018
Profs Bill & Jon

Administrative Details

e Lab 9 Today: Gardner’s Hex-a-Pawn
e Another partner lab!
* Challenging to design & debug

e Make sure you fill out the form

Last Time

* BST Implementation details:

e removeTop: detaches the root of a tree and
returns a valid BST by re-assembling the children

e remove: uses removeTop to delete a node and

reattach the returned subtree to the parent of the
removed node.

* add: because of duplicate nodes, we should
recursively call add.

Re-corrected: add(E value)

public void add(E value) {
// add value to binary search tree
// if there's no root, create value at root
if (root.isEmpty()) {

root = new BinaryTree<E>(value,EMPTY,EMPTY) ;
} else {

add(root, value);

}

count++;

add(BinaryTree<E> root, E value)

public void add(BinaryTree<E> root, E value) {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

// The location returned is the successor or predecessor
// of the to-be-inserted value

if (ordering.compare(value, nodeValue) > 0) {
// value > nodeValue

insertLocation.setRight (new BinaryTree<E>(value,EMPTY,EMPTY));
} else {

//value <= nodeValue
if (insertLocation.left().isEmpty()) {
// if value is in tree, we insert just before

insertLocation.setLeft (new BinaryTree<E>(value,EMPTY,EMPTY));
} else {

// to properly handle duplicates, add to tree rooted at pred
add (predecessor (insertLocation), value);

Demo

e BST add demo

But What About Height!?

Operations’ performance all depend on h

Can we design a binary search tree that is
always “shallow” (minimizes h)?

Yes! In many ways.

AVL trees are one example

* Named after its two inventors, G.M. Adelson-
Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information”

* The balance factor of a node is the height of its right
subtree minus the height of its left subtree.

* A node with balance factor |, 0, or -1 is considered
balanced.

* A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

Single Rotation (Left)

Unbalanced trees can be rotated to achieve balance.

A 0 0

+|
B rotate Lc> A{ \C 0

Single Rotation (Left)

Unbalanced trees can be rotated to achieve balance.

-2
C
/ [B
B) rotateRigh> A{ \C 0

/s
A

Single Right Rotation

el e =2 height k-1

: height k-2
g e height k clg height k-1

BinaryTree rotateRight()

// pre: this has a left subtree
// post: rotates local portion of tree so left child is root
protected void rotateRight() {
// establish pointers/relationships before mucking with the tree
BinaryTree<E> parent = parent;
BinaryTree<E> newRoot = left();
boolean wasChild = parent != null;
boolean wasLeftChild = isLeftChild();

// rotate!
setLeft (newRoot.right()); // hook in new root
newRoot.setRight(this); // make old root right child of new root
if (wasChild) {

// update parent pointers to rotated subtree

if (wasLeftChild) parent.setLeft(newRoot);

else parent.setRight (newRoot) ;

More Complicated Rotations

* Sometimes a single root rotation won’t
balance the tree

* Rotate, then rotate again!
* We will look at Right-Left and Left-Right

Double Rotation (Right-Left)

Double Rotation (Left-Right)

a
= 9. v
60 @/
o N g
.
O -
— .
(- ~ L
5
=
S j °5
O o
o ‘ 0
V S °
= - he
- L.
O _
A

AVL Tree Facts

A tree that is AVL except at root, where root
balance factor equals =2 can be rebalanced
with at most 2 rotations

add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

remove(v) requires at most O(log n) balance
factor changes and O(log n) (single or double)
rotations to restore AVL structure

An AVL tree on n nodes has height O(log n)

AVL Trees: One of Many

There are many strategies for tree balancing to
preserve O(log n) height, including

AVL Trees: guaranteed O(log n) height
Red-black trees: guaranteed O(log n) height

B-trees (not binary): guaranteed O(log n) height
e 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

Splay trees: Amortized O(log n) time operations
Randomized trees: O(log n) expected height

Game Trees

// 1\

https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/Tic-tac-toe-game-tree.svg/545px-Tic-tac-toe-game-tree.svg.png

Game Trees

* Nodes are positions in a game (game state)
e Edges are moves (transition from one game state to another)

e All edges to a given level represent moves by the same player

* Leaf nodes represent ending board states (winner or tie)

e # of leaf nodes = # of ways a game can be played

SN

X X

X
AZIAN
T

XL X X
(o) M I I

-
b

//

https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/Tic-tac-toe-game-tree.svg/545px-Tic-tac-toe-game-tree.svg.png

Game Trees

* In Al, often search the game tree and use an
algorithm like minimax to choose the next
“best move”

e Chess, checkers, tic-tac-toe, etc.
* What about real-time games!?

http://images.all-free-download.com/images/graphiclarge/chess_board_and_pieces_clip_art_23007.jpg
https://bogku.com/product/halo-combat-evolved/

Game Trees

* The complete game tree: the root is the
initial game state and the tree contains all
possible moves from each position
* You will build complete Hexapawn game trees

e But your computer player will “prune” the losing
branches

BaC I(Wa I"CI S I n d U Cti on (from Wikipedia)

Pick 3 colors: player | win (P1W), player 2 win (P2W), and tie
(T)-
Color leaves (height 0) of the game tree so that:

 all wins for player | are colored PIW,
 all wins for player 2 are colored P2V,
e all tiesare T.

Look at height | nodes. For each node:

 If any child is colored for the current player’s opponent, color this for the current
player’s opponent

 |[f all children are colored for the current player, color this node for the current
player
e Otherwise, color this node for a tie

Repeat for each level, moving upwards, until all nodes are colored.

The color of the root node is the outcome of optimal play.

Backwards Induction Example

Beagin O

Player 1 O O

Player 2 O O Q O
Player 1 ® ¢ © ¢ ¢ ¢ O o
Player2 @9 000000000000 000

End 0000000000CPOCPOCDOOOO

https://upload.wikimedia.org/wikipedia/commons/d/d7/Arbitrary-gametree-solved.svg

