
CSCI 136
Data Structures &

Advanced Programming

Lecture 28
Spring 2018

Profs Bill & Jon

Administrative Details
• Lab 9 Today: Gardner’s Hex-a-Pawn
• Another partner lab!
• Challenging to design & debug
• Make sure you fill out the form

Last Time

• BST Implementation details:
• removeTop: detaches the root of a tree and

returns a valid BST by re-assembling the children
• remove: uses removeTop to delete a node and

reattach the returned subtree to the parent of the
removed node.

• add: because of duplicate nodes, we should
recursively call add.

3

Re-corrected: add(E value)

public void add(E value) {
// add value to binary search tree
// if there's no root, create value at root
if (root.isEmpty()) {

root = new BinaryTree<E>(value,EMPTY,EMPTY);
} else {

add(root, value);
}
count++;

}

add(BinaryTree<E> root, E value)
public void add(BinaryTree<E> root, E value) {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
// The location returned is the successor or predecessor
// of the to-be-inserted value
if (ordering.compare(value, nodeValue) > 0) {

// value > nodeValue
insertLocation.setRight(new BinaryTree<E>(value,EMPTY,EMPTY));

} else {
//value <= nodeValue
if (insertLocation.left().isEmpty()) {

// if value is in tree, we insert just before
insertLocation.setLeft(new BinaryTree<E>(value,EMPTY,EMPTY));

} else {
// to properly handle duplicates, add to tree rooted at pred
add(predecessor(insertLocation), value);

}
}

}

Demo

• BST add demo

But What About Height?

• Operations’ performance all depend on h
• Can we design a binary search tree that is

always “shallow” (minimizes h)?
• Yes! In many ways.
• AVL trees are one example
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"

A

B

C

+2

+1

0

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree.

• A node with balance factor 1, 0, or -1 is considered
balanced.

• A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

A

B

C

+2

+1

0
A

B

C

0

00rotateLeft

Single Rotation (Left)

Unbalanced trees can be rotated to achieve balance.

A

B

C

0

00

Single Rotation (Left)

Unbalanced trees can be rotated to achieve balance.

C

B

A

-2

-1

0

rotateRight

Single Right Rotation

setR
ight

se
tL
ef
t

newRoot

BinaryTree rotateRight()
// pre: this has a left subtree
// post: rotates local portion of tree so left child is root
protected void rotateRight() {

// establish pointers/relationships before mucking with the tree
BinaryTree<E> parent = parent;
BinaryTree<E> newRoot = left();
boolean wasChild = parent != null;
boolean wasLeftChild = isLeftChild();

// rotate!
setLeft(newRoot.right()); // hook in new root
newRoot.setRight(this); // make old root right child of new root
if (wasChild) {

// update parent pointers to rotated subtree
if (wasLeftChild) parent.setLeft(newRoot);
else parent.setRight(newRoot);

}
}

More Complicated Rotations

• Sometimes a single root rotation won’t
balance the tree
• Rotate, then rotate again!
• We will look at Right-Left and Left-Right

A

C

B

+2

-1

0

A

B

C

0

00

Double Rotation (Right-Left)

A

B

C

+2

+1

0

C

A

B

-2

+1

0
A

B

C

0

00

Double Rotation (Left-Right)

C

B

A

-2

-1

0

B

E

F

-2

01

A D
-10

C 0

D

E

F

-2

0-2

B
0

A 0 C
0

B

D

E

0

+10

A
0 F

0
C

0

Double Rotation (Left-Right)

AVL Tree Facts
• A tree that is AVL except at root, where root

balance factor equals �2 can be rebalanced
with at most 2 rotations

• add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance
factor changes and O(log n) (single or double)
rotations to restore AVL structure

• An AVL tree on n nodes has height O(log n)

AVL Trees: One of Many

• There are many strategies for tree balancing to
preserve O(log n) height, including

• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height

Game Trees

https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/Tic-tac-toe-game-tree.svg/545px-Tic-tac-toe-game-tree.svg.png

Game Trees

• Nodes are positions in a game (game state)
• Edges are moves (transition from one game state to another)

• All edges to a given level represent moves by the same player

• Leaf nodes represent ending board states (winner or tie)
• # of leaf nodes = # of ways a game can be played

https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/Tic-tac-toe-game-tree.svg/545px-Tic-tac-toe-game-tree.svg.png

Game Trees

• In AI, often search the game tree and use an
algorithm like minimax to choose the next
“best move”
• Chess, checkers, tic-tac-toe, etc.
• What about real-time games?

http://images.all-free-download.com/images/graphiclarge/chess_board_and_pieces_clip_art_23007.jpg
https://bogku.com/product/halo-combat-evolved/

Game Trees

• The complete game tree: the root is the
initial game state and the tree contains all
possible moves from each position
• You will build complete Hexapawn game trees
• But your computer player will “prune” the losing

branches

Backwards Induction (from Wikipedia)

• Pick 3 colors: player 1 win (P1W), player 2 win (P2W), and tie
(T).

• Color leaves (height 0) of the game tree so that:
• all wins for player 1 are colored P1W,
• all wins for player 2 are colored P2W,
• all ties are T.

• Look at height 1 nodes. For each node:
• If any child is colored for the current player’s opponent, color this for the current

player’s opponent
• If all children are colored for the current player, color this node for the current

player
• Otherwise, color this node for a tie

• Repeat for each level, moving upwards, until all nodes are colored.
• The color of the root node is the outcome of optimal play.

Backwards Induction Example

https://upload.wikimedia.org/wikipedia/commons/d/d7/Arbitrary-gametree-solved.svg

