## CSCI 136

# Data Structures \& Advanced Programming 

Lecture 28
Spring 2018
Profs Bill \& Jon

## Administrative Details

- Lab 9 Today: Gardner's Hex-a-Pawn
- Another partner lab!
- Challenging to design \& debug
- Make sure you fill out the form


## Last Time

- BST Implementation details:
- removeTop: detaches the root of a tree and returns a valid BST by re-assembling the children
- remove: uses removeTop to delete a node and reattach the returned subtree to the parent of the removed node.
- add: because of duplicate nodes, we should recursively call add.


## Re-corrected: add(E value)

```
public void add(E value) {
    // add value to binary search tree
    // if there's no root, create value at root
    if (root.isEmpty()) {
    root = new BinaryTree<E>(value,EMPTY,EMPTY);
    } else {
    add(root, value);
    }
    count++;
}
```


## add(BinaryTree<E> root, E value)

```
public void add(BinaryTree<E> root, E value) {
    BinaryTree<E> insertLocation = locate(root,value);
    E nodeValue = insertLocation.value();
    // The location returned is the successor or predecessor
    // of the to-be-inserted value
    if (ordering.compare(value, nodeValue) > 0) {
        // value > nodeValue
        insertLocation.setRight(new BinaryTree<E>(value,EMPTY,EMPTY));
    } else {
        //value <= nodeValue
        if (insertLocation.left().isEmpty()) {
            // if value is in tree, we insert just before
            insertLocation.setLeft(new BinaryTree<E>(value,EMPTY,EMPTY));
        } else {
            // to properly handle duplicates, add to tree rooted at pred
            add(predecessor(insertLocation), value);
    }
    }
}
```


## Demo

- BST add demo


## But What About Height?

- Operations' performance all depend on $h$
- Can we design a binary search tree that is always "shallow" (minimizes h)?
- Yes! In many ways.
- AVL trees are one example
- Named after its two inventors, G.M. AdelsonVelsky and E.M. Landis, who published a paper about AVL trees in 1962 called "An algorithm for the organization of information"

- The balance factor of a node is the height of its right subtree minus the height of its left subtree.
- A node with balance factor I, 0 , or $-I$ is considered balanced.
- A node with any other balance factor is considered unbalanced and requires rebalancing the tree.


## Single Rotation (Left)

Unbalanced trees can be rotated to achieve balance.


## Single Rotation (Left)

Unbalanced trees can be rotated to achieve balance.


## Single Right Rotation



## BinaryTree rotateRight()

```
// pre: this has a left subtree
// post: rotates local portion of tree so left child is root
protected void rotateRight() {
    // establish pointers/relationships before mucking with the tree
    BinaryTree<E> parent = parent;
    BinaryTree<E> newRoot = left();
    boolean wasChild = parent != null;
    boolean wasLeftChild = isLeftChild();
    // rotate!
    setLeft(newRoot.right()); // hook in new root
    newRoot.setRight(this); // make old root right child of new root
    if (wasChild) {
    // update parent pointers to rotated subtree
    if (wasLeftChild) parent.setLeft(newRoot);
    else parent.setRight(newRoot);
    }
}
```


## More Complicated Rotations

- Sometimes a single root rotation won't balance the tree
- Rotate, then rotate again!
- We will look at Right-Left and Left-Right


## Double Rotation (Right-Left)



## Double Rotation (Left-Right)



## Double Rotation (Left-Right)



## AVL Tree Facts

- A tree that is AVL except at root, where root balance factor equals $\pm 2$ can be rebalanced with at most 2 rotations
- add(v) requires at most $O$ (log $n$ ) balance factor changes and one (single or double) rotation to restore AVL structure
- remove(v) requires at most $O(\log n)$ balance factor changes and $\mathrm{O}(\log n$ ) (single or double) rotations to restore AVL structure
- An AVL tree on $n$ nodes has height $O(\log n)$


## AVL Trees: One of Many

- There are many strategies for tree balancing to preserve $\mathrm{O}(\log n)$ height, including
- AVL Trees: guaranteed $\mathrm{O}(\log \mathrm{n})$ height
- Red-black trees: guaranteed $O(\log n)$ height
- B-trees (not binary): guaranteed $\mathrm{O}(\log \mathrm{n})$ height
- 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...
- Splay trees: Amortized $\mathrm{O}(\log \mathrm{n})$ time operations
- Randomized trees: $\mathrm{O}(\log \mathrm{n})$ expected height


## Game Trees



## Game Trees

- Nodes are positions in a game (game state)
- Edges are moves (transition from one game state to another)
- All edges to a given level represent moves by the same player
- Leaf nodes represent ending board states (winner or tie)
- \# of leaf nodes = \# of ways a game can be played



## Game Trees

- In AI, often search the game tree and use an algorithm like minimax to choose the next "best move"
- Chess, checkers, tic-tac-toe, etc.
- What about real-time games?

|  |  | Hitio | - E |
| :---: | :---: | :---: | :---: |
| 12 | 12 | 121 |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  | $3{ }^{3}$ |  |
|  |  | 商碰 |  |

## Game Trees

- The complete game tree: the root is the initial game state and the tree contains all possible moves from each position
- You will build complete Hexapawn game trees
- But your computer player will "prune" the losing branches



## Back MardS nduction (from Wikipedia)

- Pick 3 colors: player I win (PIW), player 2 win (P2W), and tie (T).
- Color leaves (height 0 ) of the game tree so that:
- all wins for player I are colored PIW,
- all wins for player 2 are colored P2W,
- all ties are T.
- Look at height I nodes. For each node:
- If any child is colored for the current player's opponent, color this for the current player's opponent
- If all children are colored for the current player, color this node for the current player
- Otherwise, color this node for a tie
- Repeat for each level, moving upwards, until all nodes are colored.
- The color of the root node is the outcome of optimal play.


## Backwards Induction Example

Begin

Player 1
$\bigcirc$
$\bigcirc$

Player 2

$\bigcirc$
$\bigcirc$
$\bigcirc$


Player 1


0


Player 2
-○○○○○ --

End


