
[TAP:JBFKC] Binary Search 

Tree
public boolean contains(E value){

if (root.isEmpty()) return false;//1

BinaryTree<E> possibleLocation = locate(root,value);//2

return value.equals(possibleLocation.value());//3

}

• Here’s an implementation of contains(). Are there 

any errors in the code?

A. Line 1

B. Line 2

C. Line 3

D. None

E. Whatever



• Binary Search Tree

• Basics

• Operations

• Implementation

• Balanced Binary Search Trees

• AVL Tree

• RB Tree

Today’s Outline



add(E value)

public void add(E value) {

}



Predecessor

// return node with largest value in root’s left subtree

protected BinaryTree<E> predecessor(BinaryTree<E> root) {

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())

result = result.right();

return result;

}



6

• Binary Search Tree

• Basics

• Operations

• Implementation

• Balanced Binary Search Trees

• AVL Tree

• Red-Black Tree

Today’s Outline



BST Observations

• The same data can be represented by 
many BST shapes

• Observations:

• Additions to a BST happen at nodes missing 
at least one child

• Removing from a BST can involve any node

• Searching for a value in a BST takes time 
proportional to the height h of the tree



8

Shallow Binary Search Trees

• Strategy: Define a notion of “balance” and 

enforce balance via rotation.

• There are many strategies for tree balancing to 

preserve O(log n) height, including

• AVL Trees: guaranteed O(log n) height

• Red-black trees: guaranteed O(log n) height

• B-trees (not binary): guaranteed O(log n) height

• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations

• Randomized trees: O(log n) expected height



10

• An AVL Tree is a binary search tree in which 

every node is balanced (balance factor = 1, 0, or -1)

AVL Trees



11

AVL Trees



13

A

B

C

+2

+1

0

A

B

C

0

00

Single Rotation (Left)



14

C

B

A

-2

-1

0

A

B

C

0

00

Single Rotation (Right)



15

A

C

B

+2

-1

0

A

B

C

0

00

Double Rotation (Right-Left)

A

B

C

+2

+1

0



16

C

A

B

-2

+1

0

A

B

C

0

00

Double Rotation (Left-Right)

C

B

A

-2

-1

0



17

B

E

F

-2

01

A D
-10

C
0

D

E

F

-2

0-2

B
0

A
0

C
0

B

D

E

0

+10

A
0

F
0

C
0

Double Rotation (Left-Right)



19

• Binary Search Tree

• Basics

• Operations

• Implementation

• Balanced Binary Search Trees

• AVL Tree

• Red-Black Tree

Today’s Outline



20

Red-Black Trees

Red-Black tree is a binary search tree with the 

following characteristics

• Each node is colored red or black

• The following properties hold:

• The root is black

• The leaves (EMPTY) are black.

• The children of red nodes are black

• All paths from a given node to it’s descendent 

leaves have the same number of black nodes



21

A Red-Black Tree
(from Wikipedia.org)



24

Red-Black Tree Insertion

• Steps

• Add node k to the tree

• Color k red

• Enforce Red-Black tree property

• If k’s parent p is black

• If k’s parent p is red



25

Red-Black Tree Insertion

• Case 1: P's sibling S is red

Credit: Paton, Wisc



26

Red-Black Tree Insertion

• Case 2: P's sibling S is black

Credit: Paton, Wisc



27

Red-Black Tree Insertion



28

Red-Black Tree Insertion



30

Red-Black Tree Insertion



31

Red-Black Tree Insertion


