
[TAP:JBFKC] Binary Search 

Tree
public boolean contains(E value){

if (root.isEmpty()) return false;//1

BinaryTree<E> possibleLocation = locate(root,value);//2

return value.equals(possibleLocation.value());//3

}

• Here’s an implementation of contains(). Are there 

any errors in the code?

A. Line 1

B. Line 2

C. Line 3

D. None

E. Whatever
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add(E value)

public void add(E value) {

}



Predecessor

// return node with largest value in root’s left subtree

protected BinaryTree<E> predecessor(BinaryTree<E> root) {

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())

result = result.right();

return result;

}
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BST Observations

• The same data can be represented by 
many BST shapes

• Observations:

• Additions to a BST happen at nodes missing 
at least one child

• Removing from a BST can involve any node

• Searching for a value in a BST takes time 
proportional to the height h of the tree
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Shallow Binary Search Trees

• Strategy: Define a notion of “balance” and 

enforce balance via rotation.

• There are many strategies for tree balancing to 

preserve O(log n) height, including

• AVL Trees: guaranteed O(log n) height

• Red-black trees: guaranteed O(log n) height

• B-trees (not binary): guaranteed O(log n) height

• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations

• Randomized trees: O(log n) expected height
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• An AVL Tree is a binary search tree in which 

every node is balanced (balance factor = 1, 0, or -1)

AVL Trees
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AVL Trees
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Red-Black Trees

Red-Black tree is a binary search tree with the 

following characteristics

• Each node is colored red or black

• The following properties hold:

• The root is black

• The leaves (EMPTY) are black.

• The children of red nodes are black

• All paths from a given node to it’s descendent 

leaves have the same number of black nodes
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A Red-Black Tree
(from Wikipedia.org)
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Red-Black Tree Insertion

• Steps

• Add node k to the tree

• Color k red

• Enforce Red-Black tree property

• If k’s parent p is black

• If k’s parent p is red
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Red-Black Tree Insertion

• Case 1: P's sibling S is red

Credit: Paton, Wisc
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Red-Black Tree Insertion

• Case 2: P's sibling S is black

Credit: Paton, Wisc
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion


