
CSCI 136
Data Structures &

Advanced Programming

Lecture 26
Spring 2018

Profs Bill & Jon

Administrative Details

• Lab TA coverage
• This weekend Emily is filling in Saturday 11-1pm

and 5-7pm
• Shanti volunteered to move her Friday hours to

Saturday 5-7pm. Is that an improvement?

• Pre-registration info session:
• Friday @2:30pm

• Sigma Xi talks this week:
• Thursday + Friday at 4:15pm

Last Time

• Heaps
• Implementation details
• Top-down (percolateUp) vs. Bottom-up

(pushDownRoot) heapify
• HeapSort
• Skew Heaps (details in book)

3

Today

• Revisiting Search
• OrderedVector implementation
• Begin Binary Search Trees

4

Search

• Some data structures we have discussed do
not support searching:
• Linear: Queues and Stacks
• PriorityQueue: Heaps

• How fast can we search (get(E value)) in:
• Array/Vector
• Linked List
• OrderedVector

O(n)
O(n)
O(log2n)

OderedVector

• What data structure did people use in Lab 8?
• Did anyone use OrderedVector?

• Does not actually implement get(E obj)!?!
• ForGETtableOrderedVector.java

Improving on OrderedVector

• The OrderedVector class allows O(log2n)
time searching over n comparable objects
• add() and remove(), though, take O(n) time in

the worst case (and on average)

• Goal: improve update times without sacrificing
the O(log2n) search time

Binary Trees and Orders

• Binary trees suggest multiple orderings of
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a
natural way to hold comparable items
• For each node v in tree

• All values in left subtree of v are ≤ v
• All values in right subtree of v are ≥ v

• This leads us to...

Binary Search Trees

• Binary search trees maintain a total ordering
among elements

• Definition: A BST is either:
• Empty
• A tree where (1) root value is greater than or

equal to all values in left subtree, and less than or
equal to all values in right subtree; (2) left and
right subtrees are also BSTs

• Examples:
data = { 3, 9, 2, 4, 5, 5, 0, 6 }

BST Observations

• The same data can be represented by many
BST shapes

• Observations:
• Searching for a value in a BST takes time

proportional to the height of the tree
• We want a tree to be as shallow as possible

• A full or complete tree has height log2n

(Really) Consider Binary Search

• In one sentence, what is the “essence” of the
binary search strategy?
• Rule out half of the list with each comparison

• arr = { -9, 17, 45, 46, 70, 101, 136 }

• What order do we compare arr’s elements?
• How can we build a BST that mimics that search

order?

Taking a Step Back

• Balance is critical to performance, but we will
initially ignore balance as we work through
the BST operations

• We will discuss (briefly?) methods to keep our
trees balanced at the end of the unit
• Like everything, details are in the book!

BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)
• Runtime of above operations?

• All O(h) – where h is the tree height
• iterator()

• This will provide an in-order traversal

BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST
• Comparator<E> ordering: for comparing nodes

• Note: E must implement Comparable

• Two constructors: One takes a Comparator
• What about the constructor that doesn’t?

BST Implementation: locate

• Several methods search the tree:
• remove, contains, add, …

• We factor out common code: locate method
• protected locate(BinaryTree<E> node, E v)
• Returns a BinaryTree<E> in the subtree whose

root is node such that either
• node has its value equal to v, or
• v is not in this subtree and node is the node whose child v

should be

• How would we implement locate()?

BST Implementation: locate

BinaryTree locate(BinaryTree root, E value)
if root’s value equals value

return root
child ç child of root that should hold value
if child is empty tree

return root // value not in root’s subtree
else

return locate(child, value) //keep looking

BST Implementation: locate

• What about this line?
child ç child of root that should hold value

• If the tree can have multiple nodes with
same value, then we need to be careful
• Convention: During add operation, only move to

right subtree if value to be added is greater than
value at node

• We’ll look at add later
• Let’s look at locate now....

The code : locate
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {

E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)

child = root.right();
else

child = root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty())

return root;
else

return locate(child, value);
}

Other core BST methods

• locate(val) returns either a node containing
v or a node where v can be added as a child

• locate(val) is used by:
• public boolean contains(E value)
• public E get(E value)
• public void add(E value)
• Public void remove(E value)

• Some of these also use another utility method
• protected BT predecessor(BT root)

• Let’s look at contains() first...

Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}

Binary Search Tree Add

• Remember!!! A binary tree is a binary search
tree if it is:
• Empty, or
• All nodes in the left subtree are less than or equal

to the root, all nodes in the right subtree are
greater than or equal to the root, and the left and
right subtrees are binary search trees.

• In our implementation, right subtrees only hold
values that are strictly greater than the root
• Why?

Add: Repeated Nodes

First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) {

root = newNode;
} else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(value,nodeValue) > 0)

insertLocation.setRight(newNode); // value > nodeValue
else

insertLocation.setLeft(newNode); // value <= nodeValue
}
count++;

}

Problem: If duplicate values are allowed in the BST, the left
subtree might not be empty when setLeft is called

How to Add Duplicate Values

How to perform: bst.add(“v”) ???

locate(“v”).setLeft(new BinaryTree (“v”)); ???

