ITAP:RLOMA] PQ vs Heap

2N

. Which of the following is false? P

A. PQ is an ADT where the element with the
highest priority is removed first. ("queue with

priority”) v
> B. Heap is a tree where every parent has a .-~
nigher priority than its children. RRA

> C. PQ can be implemented with a Heap that | S
Implemented with a Vector.

> D. They are all correct ¢.,., & o wt Ay

E. Whatever NE IR D
Ax 7K 6 Covied D

Administrative Detalls

» Lab 8 Posted: Super Lexicon
» Implement a Trie data structure
* A tree of letters

- Efficiently solve a problem using trees that are
more interesting than a simple binary tree

Today's Outline

« Heap
» + Basics

* Heapify
* Heapsort

Heap

« A heap is a tree "sorted top to bottom”™:

« any parent has a higher priority than it's children
* Heap invariant: value <= values of children

. Recursive definition:
« Root holds the highest priority value

« Subtrees are also heaps

« Not Unique: Several valid heaps can be
constructed for the same data set

eaite Wo oloring gui0ls betiean oLl

IE|":|

e - vaf

Inserting into a PQ

- Steps .
« Add new value as a leaf
» while (value < parent’s value) “L.lblc «p ”&
» swap with parent el oo
« Efficiency depends upon speed of

« Finding a place to add new node
g O

« Finding parent 5 o -

« Tree height £ £ /N
_-———g“ — 1 E AT o !

nain Hieay,

Removing From a PQ

« Steps
. Store the value of root JETRvER W

- Delete the(right most node among the nodes
with the largest depth) put its value in the root

- while (value > value of (at least) one child)
- Swap with a child with the smallest value

— « Return the value stored in step 1

Implementing Heaps

ArrayTree Tradeoffs

« Why are ArrayTrees good?
« Save space for links

« No need for additional memory allocated/garbage
collected

« Works well for full or complete trees a~A M‘ o

"« No wasted space
» Quick access to nodes (given the size of the tree)

« Why bad?
« Could waste a lot of space for other trees

» Tree of height of n requires 2"*'-1 array slots even
if only O(n) elements

Implementing Heaps

* VectorHeap

« Use array-based BT But use extensible
Vector instead of array (makes adding
elements easier)

« Remember:

* Root of tree is location 0 of Vector

e Children of node in location | are in locations 2i+1
(left) and 2i+2 (right)
- Parent of node i is in location [(i-1)/2 |

Implementing Heaps

* Features
* No gaps in array (tree is complete)

» Heap Invariant becomes
 data[i] <= data[2i+1]; data[i]J<=data[2i+2] (or children might be
null)

« When elements are added and removed, do small
amount of work to “heapify” < po.c, L& Ly

P o\ dsuwn

VectorHeap Summary

« Add/remove O(log n)
» getFirst O(1)

Today's Outline

* Heap
« Basics
» ° Heapify
* Heapsort

Heapifying A Vector (or array)

« Goal: You are given a Vector V that Is not
a valid heap, and you want to make V a
heap, i.e., "heapify” V

Heapifying A Vector (or array)

* Method I: Top-Down v-r. -
« Assume V][0...K] satisfies the heap property
» Percolate up the item in location k+1;+',,[2~
* Then V[0..k+1] satisfies the heap property

« Time complexity ’C t\j\f fm fre ’
O

- elements at depth d may be swapped d

(1 e+ (o)4 4kt) 1 (53R

0 (2=)= o hy+) 4

Heapifying A Vector (or array)

2

- Method II: Bottom-up Vvt«-3J ‘/\@y\@%
« Assume VI[k..n] satisfies the hea

* Push down the item in location k-1
* Then V[k-1..n] satisfies heap property

* Time complexity
- elements at depth d may be swapped h-d times

(%YD)—FC%)(|3+ L\ X («>

iomz

Some Sums

All of these can be proven by induction.
O 4=k

d — nktl
a2 =2"-1

O d=k

ad:Ord = (" -1) / (r-1)
"2 = (k-1)*2"+2

O d=k

A (k-d)*2 =2"" - -2

Today's Outline

* Heap
 Basics

* Heapify
» - Heapsort

Heapsort

R ena i NV N A
° éteps: - T
* Make a max-heap: array|O...n] R
OQ"‘W)» - array[0] Is largest value S
» array[n] is “final” leaf
» Letk=n

 While k> 0: 7election ot
* “remove” the root of the max-heap stored ir
n X oa,ag array[0...k] and store it at array[k]
* Now array[0...k-1] stores a max-heap of
o(f\ﬂa . size k-1, and array[k...n] is sorted
ck=k-1

Heapsort vs Quicksort

~~
[0}
£
N
]
E
[

~—0— Heap Sort
—ll— Quick Sort

200000 400000 600000 800000 1000000 1200000
Size

Heapsort
. Oa (baw\ (s alteed

» Heapsort can be done in-place
« Great for resource-constrained environments

» But Heapsort is not stable

Skew Heap

Suppose we'd like to use multiple
processors to build smaller heaps and
then merge them together

Rather than use Vector as underlying data
structure, use BT

Need a merge operation that merges two
heaps together into one heap

Detalls in book

