
[TAP:RLOMA] PQ vs Heap

• Which of the following is false?

A. PQ is an ADT where the element with the 

highest priority is removed first. (“queue with 

priority”)

B. Heap is a tree where every parent has a 

higher priority than its children.

C. PQ can be implemented with a Heap that is 

implemented with a Vector.

D. They are all correct

E. Whatever



Administrative Details

• Lab 8 Posted: Super Lexicon

• Implement a Trie data structure

• A tree of letters

• Efficiently solve a problem using trees that are 

more interesting than a simple binary tree



• Heap

• Basics

• Heapify

• Heapsort

Today’s Outline







Removing From a PQ

• Steps

• Store the value of root

• Delete the right most node among the nodes 

with the largest depth, put its value in the root

• while (value > value of (at least) one child )

• Swap with a child with the smallest value

• Return the value stored in step 1



Implementing Heaps



Implementing Heaps

• VectorHeap

• Use array-based BT But use extensible 
Vector instead of array (makes adding 
elements easier)

• Remember: 
• Root of tree is location 0 of Vector

• Children of node in location i are in locations 2i+1 
(left) and 2i+2 (right)

• Parent of node i is in location (i-1)/2



Implementing Heaps

• Features
• No gaps in array (tree is complete)

• Heap Invariant becomes
• data[i] <= data[2i+1]; data[i]<=data[2i+2] (or children might be 

null)

• When elements are added and removed, do small 
amount of work to “heapify”



VectorHeap Summary

• Add/remove O(log n)

• getFirst O(1)



• Heap

• Basics

• Heapify

• Heapsort

Today’s Outline



Heapifying A Vector (or array)

• Goal: You are given a Vector V that is not 

a valid heap, and you want to make V a 

heap, i.e., “heapify” V



Heapifying A Vector (or array)

• Method I: Top-Down

• Assume V[0...k] satisfies the heap property

• Percolate up the item in location k+1

• Then V[0..k+1] satisfies the heap property

• Time complexity

• elements at depth d may be swapped d times



Heapifying A Vector (or array)

• Method II: Bottom-up

• Assume V[k..n] satisfies the heap property

• Push down the item in location k-1

• Then V[k-1..n] satisfies heap property

• Time complexity

• elements at depth d may be swapped h-d times



Some Sums

2d
d=0

d=k

å = 2k+1 -1

d *2d
d=1

d=k

å = (k -1)*2k+1 +2

rd
d=0

d=k

å = (rk+1 -1) / (r -1)

(k -d)*2d
d=1

d=k

å = 2k+1 -k -2

All of these can be proven by induction.



• Heap

• Basics

• Heapify

• Heapsort

Today’s Outline



Heapsort
• Steps:

• Make a max-heap: array[0…n]

• array[0] is largest value

• array[n] is “final” leaf

• Let k = n

• While k > 0:

• “remove” the root of the max-heap stored in 

array[0…k] and store it at array[k]

• Now array[0…k-1] stores a max-heap of 

size k-1, and array[k…n] is sorted

• k = k - 1



0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Heapsort vs Quicksort



Heapsort

• Heapsort can be done in-place

• Great for resource-constrained environments

• But Heapsort is not stable



Skew Heap

• Suppose we’d like to use multiple 

processors to build smaller heaps and 

then merge them together

• Rather than use Vector as underlying data 
structure, use BT

• Need a merge operation that merges two 
heaps together into one heap

• Details in book


