CSCI 136
Data Structures &
Advanced Programming

Lecture 24
Spring 2018
Profs Bill & Jon

Administrative Details

* Lab 8 Posted: Super Lexicon

* Implement a Trie data structure

e Trie: A tree of letters
e Efficiently solve a problem using trees

e |exicon.html

e Partners (fill out the form)

* Optional extensions are challenging!

* Pre-registration info session: Friday @2:30pm

http://cs.williams.edu/~cs136/labs/lexicon.html

Last Time

* Breadth-First and Depth-First Search
* Application: Huffman Encoding
* Priority Queues

Today

* Heaps
* Implementation
* Some analysis + proofs

* Heapsort

Priority Queues

* Always dequeue object with highest
priority (smallest rank) regardless of when it
was enqueued

e Data can be received/inserted in any order,
but it is always returned/removed according
to priority

e Like ordered structures (i.e., OrderedVectors

and OrderedLists), PQs require comparisons
of values

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> ({
public E getFirst(); // peeks at minimum element
public E remove(); // removes + returns min element
public void add(E value); // adds an element
public boolean isEmpty/();
public int size();
public void clear();

Implementing PQs

* An OrderedVector (PriorityVector)

e Like a normal Vector, but no add(int i)

* |nstead, add (Object o) places o at proper location according
to the ordering of all objects in the Vector

e O(n) to add/remove from vector
e Details in book...
e Can we do better than O(n)?

A Heap! (VectorHeap)

* Partially ordered binary tree
* O(log,n) to add/remove from heap

Heap

A heap is a special type of tree
e Root holds smallest (highest priority) value
e Subtrees are also heaps (this is important!)

Values increase in priority (decrease in rank) from
leaves to root (from descendant to ancestor)

Heap Invariant for nodes: For each child of each node
e node.value() <= child.value/() // if child exists

Several valid heaps for same data set (no unique
representation)

1 1 1 1

Implementing Heaps

* VectorHeap

e Use conceptual array representation of BT
(ArrayTree), but use extensible Vector instead

of array (makes adding elements easier)

* Note:

e Root of tree is location 0 of Vector

e Children of node in location i are in locations 2i+|
(left) and 2i+2 (right)
e Parent of node i is in location (i-1)/2
— Remember: dividing Integers truncates the result

* Heap Invariant becomes
 data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

Implementing Heaps

e Strategy: tree modifications that always preserve tree
completeness, but may violate heap property. Then fix.

e Add/remove never add gaps to array

* We always add in next available array slot (left-most available spot in
binary tree)

* We always remove using “final” leaf

* When elements are added and removed, do small amount of
work to “re-heapify”

Inserting into a PQ

Add new value as a leaf

“Percolate” it up the tree

e while (value < parent’s value) swap with parent
This operation preserves the heap property
since new value was the only one violating
heap property

Efficiency depends upon speed of

* Finding a place to add new node
* Finding parent
* Tree height

Removing From a PQ

Get value from root node (highest priority)
Find a leaf, delete it, put its data in the root
“Push” data down through the tree

e while (data.value > value of (at least) one child)
e Swap data with data of smaller child

This operation preserves the heap property

Efficiency depends upon speed of
* Finding a leaf
* Finding locations of children

* Height of tree

VectorHeap Summary

Let’s look at VectorHeap code....

Add/remove are both O(log n)

Data is not completely sorted

e “Partial” order is maintained: all root-to-leaf paths

Note: VectorHeap(Vector<g> v)

e Takes an unordered Vector and uses it to
construct a heap

e How!?

