ITAP:JZXUF] Array based Tree

 What is the index of E’s parent?

Array-Based Binary Trees

« Encode structure of tree in array indexes
« Put root at index 0

« Where are children of node i?
> = Children of node i are at 2i+1 and 2i+2

« Where is parent of node j? A
> « Parent of node j is at (j-1)/2 '%

Administrative Detalls

* CS Colloguium?!?!

» Meets (almost) every Friday at 2:30pm
» Guest speaker presents their research
» Next Friday (4/20) we will have an information
session instead of a normal speaker
» Discussion of courses offered next semester

 Advising about majoring in CS
— We can sign major declaration sheets there

 Food!

Today's Outline

» . Array-based Trees
« Huffman Encoding
* Priority Queue
* Heap data structure

ArrayTree Tradeoffs

 Why are ArrayTrees good?

» Save space for links

* No need for additional memory allocated/garbage
collected

« Works well for full or complete trees
* No wasted space
» Quick access to nodes (given the size of the tree)

 Why bad?
(Could waste a lot of space for other trees

 Tree of height of n requires 2"1-1 array slots even
if only O(n) elements A N

|
7 |\ RL V| 17 /D\ /g\

Today's Outline

* Array-based Trees
» - Huffman Encoding
* Priority Queue
* Heap data structure

Default Encoding of Characters

« Computers encode a text as a sequence of bits

ASCII TABLE

Cher ¢

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] G2/ 20 @ 64 40 @ 96 60
1 1 [START OF HEADING] 33 21 ! 65 41 C%.) 61 @
2 2 [START OF TEXT] 34 2 " 66 42 98 62

3 3 [END OF TEXT] 35 23 # 67 43 € 99 63 ¢
4 4 [END OF TRANSMISSION] | 36 24 % 68 4 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 | 72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 | 105 69 i
10 A [LINE FEED] 42 2A * 74 4A] 106 6A j
11 B [VERTICAL TAB] 43 2B+ 75 48 K 107 68 k
12 c [FORM FEED] 44 2c 76 4ac L 108 6C I
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 60 m
14 E [SHIFT QUT] 46 2B . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F 79 4F O 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 o0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 3 4 84 54 T 116 74t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56V 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 x
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79y
26 1A [SUBSTITUTE] 58 34 90 5A Z 122 A z
27 1B [ESCAPE] 59 3B ; 91 58 I 123 7B {
28 1C [FILE SEPARATOR] 60 3¢ < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 sD 1 125 7D}
30 1E [RECORD SEPARATOR] 62 3 > 94 5~ 126 7E -~
31 1F [UNIT SEPARATOR] 63 3F 2 95 5F 127 7F [DEL]

ez a9

Motivation

In ASCII: 1 character = 8 bits (1 byte)

« Allows for 28 = 256 different characters 20
Space to store “AN_ANTARCTIC_PENGUIN”
1ox b = 1{s Lis

Is there a better way?
* Note that only 11 symbols are used: ANTRCIPEGU _

« “ASClII-lite” only needs 4 bits per symbol (since
23<11<2%)

2 xU = 2‘9 }a\,{f
Can we still do better??

Huffman Codes

- Example
« AN_ANTARCTIC_PENGUIN
« Compute letter frequencies

« Key ldea: Use fewer bits for most common letters

3 2 1 1 2 4 1 1 2 1 2

110 1117 101 100 OOO 001 100 101 010 010 O11
1 0 1 0 1 0

Features of Good Encoding

* Prefix property: No encoding Is a prefix of
another encoding (letters appear at
leaves)

* No internal node has a single child

ﬁ Nodes with lower frequency have greater
depth

» All optimal length unambiguous encodings
have these features

Huffman Encoding

 Input: symbols of alphabet with
frequencies

« Huffman encode as follows

» Create a single-node tree for each symbol:
key Is frequency; value is letter
» while there is more than one tree

 Find two trees T1 and T2 with lowest keys

» Merge them into new tree T with dummy value and
key= T1l.key+ T2.key

* Theorem: The tree computed by Huffman
1< an ontimal encodina for aiven

The Huffman Tree
(29

U:l T:2 G1

P:1 R:1 E:1

Left = 0; Right = 1

*Each node’s value is the sum of the frequencies of all its children

How To Implement Huffman

Keep a Vector of Binary Trees

Sorted them by decreasing frequency
* Removing two smallest frequency trees is fast

Insert merged tree into correct sorted
location In Vector

Running Time:

* O(n log n) for Initial sorting
« O(n?) for while loop

Can we do better...?

What Huffman Encoder Needs

A structure S to hold items with priorities

S should support operations
- add(E item); // add an item
* E removeMin(); // remove highest priority item

S should be designed to make these two
operations fast

If, say, they both ran in O(log n) time, the
Huffman while loop would take O(n log n)
time instead of O(n?)!

Today's Outline

* Array-based Trees
« Huffman Encoding
» * Priority Queue
* Heap data structure

Priority Queues

* Which data structure would you use to keep

track of custémers in line?

 What if it's a line in the Emergency Room?

Priority Queue Application

T~
— * -

Packet Sources May Be Ordered by Sender

sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yvahoo.com 10

spammer .com 100 (worst)

Priority Queues

» Always dequeue object with highest
priority (smallest rank) first regardless of

when it was enqueued

- Data can be received/inserted in any
order, but It is always returned/removed

according to priority
* PQs require the values to be comparable

PQ Interface |

L/(-A% PLV Fon I "’*Y\cw'l'é C" L\NPW'“\L(PC_A’YBKX

public interface PriorityQueue<E extends Comparable<E>> {

public
public
public
public
public
public

E getFirst(); // peeks at minimum element
(/ Dn L }/L‘QA\!&LDV:sy.
E remove () ; // 'removes minimmum element

// adds an element

void add (E value);s\
@Afmt\w_

boolean isEmpty () ;
int size();

void clear () ;

Implementing PQs

 How would you implement PQs?
 Build off of a Queue implementation?

Today's Outline

* Array-based Trees

« Huffman Encoding

* Priority Queue

» . Heap-data structure

MDY

Heap

* A heap Is a tree “sorted top to bottom™:
 any parent has a higher priority than it's children
« Heap invariant: value <= values of children
» Recursive definition:
» Root holds the highest priority value
» Subtrees are also heaps

» Not Unique: Several valid heaps can be
constructed for the same data set

heaise W b"‘dze)ri‘} (VSRS L—e/'tbvwa SJL\}k(}S

Inserting into a PQ

« Steps
» Add new value as a leaf
- while (value < parent’s valug) “Lubblc v
- swap with parent e ep
- Efficiency depends upon speed of
» Finding a place to add new node

6)
- Finding parent 5 °
. Tree height /N /N /N
Tee helgnt N3 q\%s v
/ / \} / \
[~) L

1>, !7_'j

