
[TAP:JZXUF] Array based Tree

• What is the index of E’s parent?



Administrative Details

• CS Colloquium?!?!

• Meets (almost) every Friday at 2:30pm

• Guest speaker presents their research

• Next Friday (4/20) we will have an information 

session instead of a normal speaker

• Discussion of courses offered next semester

• Advising about majoring in CS 

– We can sign major declaration sheets there

• Food!



• Array-based Trees

• Huffman Encoding

• Priority Queue 

• Heap data structure

Today’s Outline



ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links

• No need for additional memory allocated/garbage 
collected

• Works well for full or complete trees

• No wasted space

• Quick access to nodes (given the size of the tree)

• Why bad?
• Could waste a lot of space for other trees

• Tree of height of n requires 2n+1-1 array slots even 
if only O(n) elements



• Array-based Trees

• Huffman Encoding

• Priority Queue 

• Heap data structure

Today’s Outline



Default Encoding of Characters

• Computers encode a text as a sequence of bits



Motivation

• In ASCII: 1 character = 8 bits (1 byte)
• Allows for 28 = 256 different characters

• Space to store “AN_ANTARCTIC_PENGUIN”

• Is there a better way?
• Note that only 11 symbols are used: ANTRCIPEGU_

• “ASCII-lite” only needs 4 bits per symbol (since 
23<11<24)

• Can we still do better??



Huffman Codes

• Example
• AN_ANTARCTIC_PENGUIN

• Compute letter frequencies

A C E G I N P R T U _

3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

A C E G I N P R T U _

3 2 1 1 2 4 1 1 2 1 2

110 111 101

1

100

0

000 001 100

1

101

0

010

1

010

0

011



Features of Good Encoding

• Prefix property: No encoding is a prefix of 

another encoding (letters appear at 

leaves)

• No internal node has a single child

• Nodes with lower frequency have greater 

depth

• All optimal length unambiguous encodings 

have these features



Huffman Encoding

• Input: symbols of alphabet with 

frequencies

• Huffman encode as follows

• Create a single-node tree for each symbol: 

key is frequency; value is letter

• while there is more than one tree

• Find two trees T1 and T2 with lowest keys

• Merge them into new tree T with dummy value and 

key= T1.key+ T2.key

• Theorem: The tree computed by Huffman 

is an optimal encoding for given 

frequencies



The Huffman Tree

*Each node’s value is the sum of the frequencies of all its children



How To Implement Huffman

• Keep a Vector of Binary Trees

• Sorted them by decreasing frequency

• Removing two smallest frequency trees is fast

• Insert merged tree into correct sorted 

location in Vector

• Running Time:

• O(n log n) for initial sorting

• O(n2) for while loop

• Can we do better...?



What Huffman Encoder Needs

• A structure S to hold items with priorities

• S should support operations

• add(E item); // add an item

• E removeMin(); // remove highest priority item

• S should be designed to make these two 

operations fast

• If, say, they both ran in O(log n) time, the 

Huffman while loop would take O(n log n) 

time instead of O(n2)!



• Array-based Trees

• Huffman Encoding

• Priority Queue 

• Heap data structure

Today’s Outline



Priority Queues

• Which data structure would you use to keep 

track of customers in line?

• What if it’s a line in the Emergency Room?



Priority Queue Application

Packet Sources May Be Ordered by Sender

sysnet.cs.williams.edu priority = 1 (best)

bull.cs.williams.edu 2

yahoo.com 10

spammer.com 100 (worst)

Lookup



Priority Queues

• Always dequeue object with highest 

priority (smallest rank) first regardless of 

when it was enqueued

• Data can be received/inserted in any 

order, but it is always returned/removed 

according to priority

• PQs require the values to be comparable



PQ Interface

public interface PriorityQueue<E extends Comparable<E>> { 

public E getFirst(); // peeks at minimum element

public E remove(); // removes minimum element

public void add(E value); // adds an element

public boolean isEmpty(); 

public int size(); 

public void clear();

} 



Implementing PQs

• How would you implement PQs?

• Build off of a Queue implementation?



• Array-based Trees

• Huffman Encoding

• Priority Queue 

• Heap data structure

Today’s Outline



Heap

• A heap is a tree “sorted top to bottom”:
• any parent has a higher priority than it’s children

• Heap invariant: value <= values of children

• Recursive definition:

• Root holds the highest priority value

• Subtrees are also heaps

• Not Unique: Several valid heaps can be 
constructed for the same data set



Inserting into a PQ

• Steps

• Add new value as a leaf

• while (value < parent’s value) 

• swap with parent

• Efficiency depends upon speed of

• Finding a place to add new node

• Finding parent

• Tree height


