
CSCI 136
Data Structures &

Advanced Programming

Lecture 23
Spring 2018

Profs Bill & Jon

Last Time

• Binary Tree Traversals
• Binary Tree Iterators
• Array representation of trees
• Node i’s children: 2i+1, 2i+2
• Node i’s parent: (i-1)/2
• Good for full or complete trees
• Wasted space if tree is sparse or unbalanced

2

Today

• Breadth-First and Depth-First Search
• Application: Huffman Encoding
• Priority Queues
• Heaps

3

Recall from last class:

• In-order: “left, node, right”

• Pre-order: “node, left, right”

• Post-order: “left, right, node”

• Level-order: visit all nodes at depth i before
depth i+1

Tree Traversals

Stack

Queue

Traversals & Searching

• We can use traversals for searching unordered
trees

• How might we search a tree for a value?
• Breadth-First: Explore nodes near the root before

nodes far away (level order traversal)
• Find the nearest gas station

• Depth-First: Explore nodes deep in the tree first
(post-order traversal)
• Solution to a maze

– Go as far as you can until you hit a dead end, then choose a
different branch (Maze video)

https://en.wikipedia.org/wiki/File:MAZE_30x20_DFS.ogv

Next up: Huffman Codes
• Computers encode a text as a sequence of bits

https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

Huffman Codes

• In ASCII: 1 character = 8 bits (1 byte)
• Allows for 28 = 256 different characters

• �A� = 01000001, �B� = 01000010
• Space to store �AN_ANTARCTIC_PENGUIN�

• 20 characters -> 20*8 bits = 160 bits

• Is there a better way?
• Only 11 symbols are used (ANTRCIPEGU_)
• “ASCII-lite” only needs 4 bits per symbol (since 24>11)!

• 20*4 = 80 bits instead of 160!

• Can we still do better??

Huffman Codes

• A Huffman code is an optimal prefix code for lossless
compression
• Compression: data is converted to a format that

takes up less space than the original
• Lossless: all of the information in the original data

is preserved in the compressed version
• Prefix code: a variable-length encoding where no

codeword is a prefix of another codeword

• Our goal is to take a string and represent it using the
smallest number of bits we can, without losing any
information about the original string.

Huffman Codes

• Example
• AN_ANTARCTIC_PENGUIN
• Compute letter frequencies

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

Huffman Encoding Algorithm

Input: symbols of alphabet with frequencies
• Huffman encode algorithm is as follows:
• Create a single-node tree for each symbol: key is

frequency; weight is letter
• while there is more than one tree:

• Find two trees T1 and T2 with lowest weights
• Merge them into new tree T with:

T.weight = T1.weight+ T2.weigth

• Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

Demo

• To run the Huffman code demo found on
course webpage:

java -jar huffman.jar

The Encoding Tree (With Weights)

*Each node’s value is the sum of the frequencies of all its children

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

Implementing the Algorithm

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct sorted
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for while loop

• Can we do better...?

What Huffman Encoder Needs

• A structure S to hold items with priorities
• S should support operations
• add(E item); // add an item
• E removeMin(); // remove min priority item

• S should be designed to make these two
operations fast

• If, say, they both ran in O(log n) time, the
Huffman while loop would take O(n log n)
time instead of O(n2)!

Priority Queues

• Name is misleading: They are not FIFO
• Always dequeue object with highest

priority (smallest rank) regardless of when it
was enqueued

• Data can be received/inserted in any order,
but it is always returned/removed according
to priority

• Like ordered structures (i.e., OrderedVectors
and OrderedLists), PQs require comparisons
of values

Priority Queues

• Priority queues are also used for:
• Scheduling processes in an operating system

• Priority is function of time lost + process priority

• Order services on server
• Backup is low priority, so don’t do when high priority tasks need

to happen

• Scheduling future events in a simulation

• Medical waiting room
• Huffman codes - order by tree size/weight
• A variety of graph/network algorithms
• To roughly rank choices that are generated out of order

An Apology

• On behalf of computer scientists everywhere,
we’d like to apologize for the confusion that
inevitably results from the fact that:

Higher Priority == Lower Rank
• The PQ removes the lowest ranked value in an

ordering: that is, the highest priority value!

We’re sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes + returns min element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Notes on PQ Interface

• Unlike previous structures, we do not extend
any other interfaces
• Many reasons: For example, it’s not clear that

there’s an obvious iteration order

• PriorityQueue stores Comparables: methods
consume Comparable parameters and return
Comparable values
• Could be made to use Comparators instead…

Implementing PQs

• Queue?
• Wouldn’t work so well because we can’t insert and

remove in the “right” way (i.e., keeping things ordered)

• OrderedVector?
• Like a normal Vector, but no add(int i)

• Instead, add(Object o) places o at proper location according
to the ordering of all objects in the Vector

• O(n) to add/remove from vector
• Details in book…
• Can we do better than O(n)?

• Heap!
• Partially ordered binary tree

