CSCI 136
Data Structures &
Advanced Programming

Lecture 23
Spring 2018
Profs Bill & Jon

Last Time

* Binary Tree Traversals
* Binary Tree Iterators
* Array representation of trees
e Node i’s children: 2i+1, 2i+2
* Node i’s parent: (i-1)/2
* Good for full or complete trees
* Wasted space if tree is sparse or unbalanced

Today

Breadth-First and Depth-First Search
Application: Huffman Encoding
Priority Queues

Heaps

Tree Traversals

Recall from last class:
* |n-order: “left, node, right”

e Pre-order: “node, left, right” — Stack

e Post-order: “left, right, node”

_

* Level-order: visit all nodes at depth i before } Queue
depth i+l

Traversals & Searching

* We can use traversals for searching unordered
trees

* How might we search a tree for a value?

* Breadth-First: Explore nodes near the root before
nodes far away (level order traversal)

* Find the nearest gas station
* Depth-First: Explore nodes deep in the tree first
(post-order traversal)

e Solution to a maze

— Go as far as you can until you hit a dead end, then choose a
different branch (Maze video)

https://en.wikipedia.org/wiki/File:MAZE_30x20_DFS.ogv

Next up: Huffman Codes

 Computers encode a text as a sequence of bits

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] 64 40 @ 96 60 N
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 C
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ! 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 1 105 69 i
10 A [LINE FEED] 42 2A * 74 4A) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C) 76 4C L 108 6C |
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E 0 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F 0 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 P
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 1] 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 Vv 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A 4 122 TA z
27 1B [ESCAPE] 59 3B H 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 7D }
30 1E [RECORD SEPARATOR] 62 3E > 94 5E - 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F _ 127 7F [DEL]

https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

Huffman Codes

In ASCII: | character = 8 bits (| byte)

e Allows for 28 = 256 different characters

‘A’ =01000001, ‘B" =01000010

Space to store “AN_ANTARCTIC_PENGUIN”
e 20 characters -> 20*8 bits = 160 bits

Is there a better way!?
 Only Il symbols are used (ANTRCIPEGU)

o “ASCII-lite” only needs 4 bits per symbol (since 2*>11)!
e 204 = 80 bits instead of 160!

Can we still do better??

Huffman Codes

* A Huffman code is an optimal prefix code for lossless
compression

e Compression: data is converted to a format that
takes up less space than the original

* Lossless: all of the information in the original data
is preserved in the compressed version

* Prefix code: a variable-length encoding where no
codeword is a prefix of another codeword

* Our goal is to take a string and represent it using the
smallest number of bits we can, without losing any
information about the original string.

Huffman Codes

* Example
e AN_ANTARCTIC_PENGUIN
e Compute letter frequencies

e Key ldea: Use fewer bits for most common letters

3 2 I I 2 4 I I 2 I 2
1o 111 10l 1000 000 0Ol [0OI 11010 OlOI 0100 OlIl

e Uses 67 bits to encode entire string

The Encoding Tree

N:4

u:1l

A:3

C:2

0 1
2 O O
1 0 1 0 1
T2 G1| |p1| |rR1| |E1

Left = O; Right = 1

Huffman Encoding Algorithm

Input: symbols of alphabet with frequencies

e Huffman encode algorithm is as follows:

* Create a single-node tree for each symbol: key is
frequency; weight is letter

* while there is more than one tree:
* Find two trees T, and T, with lowest weights

* Merge them into new tree T with:
T.weight = T,.weight+ T,.weigth

 Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

Demo

e To run the Huffman code demo found on
course webpage:
java -jar huffman. jar

The Encoding Tree (With Weights)

0 1 0 1
NONEENO PN O VRN OF
1:2 N:4 e 5 e a A:3 C:2

0 1 = o/\1 0o]\1
U:1 T:2 G:1 P:1 R:1 E:l

Left = O; Right = 1

*Each node’s value is the sum of the frequencies of all its children

Implementing the Algorithm

Keep a Vector of Binary Trees

Sort them by decreasing frequency

* Removing two smallest frequency trees is fast

Insert merged tree into correct sorted
location in Vector

Running Time:

* O(n log n) for initial sorting
e O(n?) for while loop

Can we do better...?

What Huffman Encoder Needs

A structure S to hold items with priorities

S should support operations
e add(E item); //addan item

e E removeMin(); // remove min priority item

S should be designed to make these two
operations fast

If, say, they both ran in O(log n) time, the

Huffman while loop would take O(n log n)
time instead of O(n?)!

Priority Queues

Name is misleading: They are not FIFO

Always dequeue object with highest
priority (smallest rank) regardless of when it
was enqueued

Data can be received/inserted in any order,
but it is always returned/removed according
to priority

Like ordered structures (i.e., OrderedVectors

and OrderedLists), PQs require comparisons
of values

Priority Queues

* Priority queues are also used for:

e Scheduling processes in an operating system

 Priority is function of time lost + process priority

e Order services on server

e Backup is low priority, so don’t do when high priority tasks need
to happen

e Scheduling future events in a simulation

* Medical waiting room

* Huffman codes - order by tree size/weight
* A variety of graph/network algorithms

* To roughly rank choices that are generated out of order

An Apology

* On behalf of computer scientists everywhere,
we’d like to apologize for the confusion that
inevitably results from the fact that:

Higher Priority == Lower Rank

e The PQ removes the lowest ranked value in an
ordering: that is, the highest priority value!

We’'re sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> ({
public E getFirst(); // peeks at minimum element
public E remove(); // removes + returns min element
public void add(E value); // adds an element
public boolean isEmpty/();
public int size();
public void clear();

Notes on PQ Interface

* Unlike previous structures, we do not extend
any other interfaces

* Many reasons: For example, it’s not clear that
there’s an obvious iteration order

* PriorityQueue stores Comparables: methods
consume Comparable parameters and return
Comparable values

e Could be made to use Comparators instead...

Implementing PQs

e Queue!

* Wouldn’'t work so well because we can’t insert and
remove in the “right” way (i.e., keeping things ordered)

e OrderedVector!

e Like a normal Vector, but no add(int i)

* |nstead, add (Object o) places o at proper location according
to the ordering of all objects in the Vector

e O(n) to add/remove from vector
e Details in book...
e Can we do better than O(n)?

* Heap!

* Partially ordered binary tree

