CSCI 136

Data Structures \& Advanced Programming

Lecture 23
Spring 2018
Profs Bill \& Jon

Last Time

- Binary Tree Traversals
- Binary Tree Iterators
- Array representation of trees
- Node i's children: $2 i+1,2 i+2$
- Node i's parent: (i-I)/2
- Good for full or complete trees
- Wasted space if tree is sparse or unbalanced

Today

- Breadth-First and Depth-First Search
- Application: Huffman Encoding
- Priority Queues
- Heaps

Tree Traversals

Recall from last class:

- In-order: "left, node, right"
- Pre-order: "node, left, right"
- Post-order: "left, right, node"
- Level-order: visit all nodes at depth i before depth $\mathrm{i}+1$

Traversals \& Searching

- We can use traversals for searching unordered trees
- How might we search a tree for a value?
- Breadth-First: Explore nodes near the root before nodes far away (level order traversal)
- Find the nearest gas station
- Depth-First: Explore nodes deep in the tree first (post-order traversal)
- Solution to a maze
- Go as far as you can until you hit a dead end, then choose a different branch (Maze video)

Next up: Huffman Codes

- Computers encode a text as a sequence of bits ASCII TABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	-
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	'	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	I	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	.	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2 F	1	79	4F	0	111	6 F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	5
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1 C	[FILE SEPARATOR]	60	3 C	$<$	92	5C	1	124	7 C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	$>$	94	5E	ヘ	126	7E	\sim
31	1 F	[UNIT SEPARATOR]	63	3 F	?	95	5 F	-	127	7F	[DEL]

Huffman Codes

- In ASCII: I character = 8 bits (I byte)
- Allows for $2^{8}=256$ different characters
- 'A' = 0100000I, 'B' = 01000010
- Space to store "AN_ANTARCTIC_PENGUIN"
- 20 characters $->20 * 8$ bits $=160$ bits
- Is there a better way?
- Only II symbols are used (ANTRCIPEGU_)
- "ASCII-lite" only needs 4 bits per symbol (since $2^{4}>$ II)!
- $20 * 4=80$ bits instead of 160 !
- Can we still do better??

Huffman Codes

- A Huffman code is an optimal prefix code for lossless compression
- Compression: data is converted to a format that takes up less space than the original
- Lossless: all of the information in the original data is preserved in the compressed version
- Prefix code: a variable-length encoding where no codeword is a prefix of another codeword
- Our goal is to take a string and represent it using the smallest number of bits we can, without losing any information about the original string.

Huffman Codes

- Example
- AN_ANTARCTIC_PENGUIN
- Compute letter frequencies

- Key Idea: Use fewer bits for most common letters

A	C	E	G		N	P	R	T	U	
3	2	1	1	2	4	1	1	2	1	2
110	111	1011	1000	000	001	1001	1010	0101	0100	011

- Uses 67 bits to encode entire string

The Encoding Tree

Left $=0 ;$ Right $=1$

Huffman Encoding Algorithm

Input: symbols of alphabet with frequencies

- Huffman encode algorithm is as follows:
- Create a single-node tree for each symbol: key is frequency; weight is letter
- while there is more than one tree:
- Find two trees T_{1} and T_{2} with lowest weights
- Merge them into new tree T with:

$$
\text { T.weight }=\mathrm{T}_{1} \cdot \text { weight+ } \mathrm{T}_{2} \cdot \text { weigth }
$$

- Theorem: The tree computed by Huffman is an optimal encoding for given frequencies

Demo

- To run the Huffman code demo found on course webpage:
java -jar huffman.jar

The Encoding Tree (With Weights)

$$
\text { Left }=0 ; \text { Right }=1
$$

*Each node's value is the sum of the frequencies of all its children

Implementing the Algorithm

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
- Removing two smallest frequency trees is fast
- Insert merged tree into correct sorted location in Vector
- Running Time:
- $O(n \log n)$ for initial sorting
- $O\left(n^{2}\right)$ for while loop
- Can we do better...?

What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
- add(E item); // add an item
- E removeMin(); // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in $O(\log n)$ time, the Huffman while loop would take $O(n \log n)$ time instead of $O\left(n^{2}\right)$!

Priority Queues

- Name is misleading: They are not FIFO
- Always dequeue object with highest priority (smallest rank) regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values

Priority Queues

- Priority queues are also used for:
- Scheduling processes in an operating system
- Priority is function of time lost + process priority
- Order services on server
- Backup is low priority, so don't do when high priority tasks need to happen
- Scheduling future events in a simulation
- Medical waiting room
- Huffman codes - order by tree size/weight
- A variety of graph/network algorithms
- To roughly rank choices that are generated out of order

An Apology

- On behalf of computer scientists everywhere, we'd like to apologize for the confusion that inevitably results from the fact that:

Higher Priority == Lower Rank

- The PQ removes the lowest ranked value in an ordering: that is, the highest priority value!

We're sorry!

PQ Interface

```
public interface PriorityQueue<E extends Comparable<E>> {
    public E getFirst(); // peeks at minimum element
    public E remove(); // removes + returns min element
    public void add(E value); // adds an element
    public boolean isEmpty();
    public int size();
    public void clear();
}
```


Notes on PQ Interface

- Unlike previous structures, we do not extend any other interfaces
- Many reasons: For example, it's not clear that there's an obvious iteration order
- PriorityQueue stores Comparables: methods consume Comparable parameters and return
Comparable values
- Could be made to use Comparators instead...

Implementing PQs

- Queue?
- Wouldn't work so well because we can't insert and remove in the "right" way (i.e., keeping things ordered)
- OrderedVector?
- Like a normal Vector, but no add(int i)
- Instead, add(Object o) places o at proper location according to the ordering of all objects in the Vector
- $O(n)$ to add/remove from vector
- Details in book...
- Can we do better than $O(n)$?
- Heap!
- Partially ordered binary tree

