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Administrative Details

e CS Colloquium!?!
* Meets (almost) every Friday at 2:30pm
* Guest speaker presents their research

* Next Friday (4/20) we will have an information
session instead of a normal speaker
* Discussion of courses offered next semester

e Advising about majoring in CS

— We can sign major declaration sheets there

e Food!



Last Time

e The structure5 BinaryTree class
e implementation details
* Quick proofs and theory

* Number of nodes at a given depth d is at most 2¢

e The total number of nodes in a tree of height n is at
most 2" )]

* A tree with n nodes has exactly n-| edges

* Implications: if a tree is balanced (full or
complete), the height is log,n



Today

* Traversing trees

* Pre/post/in/level-order traversals
* |terators for each traversal strategy

* Alternative Tree Representations
* Array-based binary trees



Implementing structure> BinaryTree

|

* BinaryTree<E> class Sarent
* |nstance variables value
e BinaryTree: parent, left, right left [right

e E: value J// \\\

null
null
this | this

* public BinaryTree()

e public BinaryTree(E value)

e public BinaryTree(E value, EMPTY BT
BinaryTree<E> left,
BinaryTree<E> right)



Implementing BinaryTree

Connect BinaryTree nodes:

e public void setLeft(Binary Tree<E> newLleft)
public void setRight(BinaryTree<E> newlLeft)
protected void setParent(BinaryTree<E> newParent)
Navigate edges:

e public BinaryTree<E> left()
public BinaryTree<E> right()
public BinaryTree<E> parent()

Interact with BinaryTree data:

e public E value()

public void setValue(E value)
Get an lterator:

e public Iterator<E> iterator()

e public Iterator<E> preorderlterator()
public Iterator<E> postorderlterator|() 2?7
public Iterator<kE> levelorderlteratorterator()



Tree Traversals

* In linear structures, there are only a few basic
ways to traverse the data structure

e Start at one end and visit each element
o Start at the other end and visit each element

* How do we traverse binary trees!?

e (At least) four reasonable mechanisms



Tree Traversals
Marky

/ N\

Ricky Danny

/NN

In-order: “left, node, right” Terry Mikey Davey
Terry, Ricky, Mikey, Marky, Danny, Davey

Pre-order: “node, left, right”
Marky, Ricky, Terry, Mikey, Danny, Davey

Post-order: “left, right, node”
Terry, Mikey, Ricky, Davey, Danny, Marky,

Level-order: visit all nodes at depth 1 before depth 1i+1
Marky, Ricky, Danny, Terry, Mikey, Davey



+
Tree Traversals ./ \7
/ N\
2 3
* Each node is visited before any children. Visit

node, then each node in left subtree, then each
node in right subtree. (node, left, right)

o +¥237

e Pre-order

* |n-order

e Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
(left, node, right)

o 2%3+7

(“pseudocode’)



/+\
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/N
2 3

Tree Traversals

e Post-order

e Each node is visited after its children are visited.
Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)

°« 23%7+
* Level-order (not obviously recursive!)

e All nodes of level 1 are visited before nodes of
level 1+1. (visit nodes left to right on each level)

o +¥723

(“pseudocode’)



Tree Traversals

public void preOrder (BinaryTree t) {
if(t.isEmpty())

+
return; *// \\7

visit(t); // some method

preOrder(t.left()); // \\
preOrder(t.right()); 2 3

For in-order and post-order: just move visit (t)!

But what about level-order???
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Level-Order Traversal

* How does level-order work?
* We visit the nodes level by level, left to right

e Hint: we will use a linear structure...
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Level-Order Tree Traversal

public static <E> void levelOrder (BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> q = new QueuelList<BinaryTree<E>>();
g.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = g.dequeue();
visit(next);
if(!next.left().isEmpty()) g.enqueue(next.left());
if(!next.right().1isEmpty()) g.enqueue(next.right());



|terators

* Provide iterators that implement the different
tree traversal algorithms

* Methods provided by BinaryTree class:
* preorderlterator()
e inorderlterator()
e postorderlterator()

* levelorderlterator()



Implementing the lterators

e Basic idea

e Should return elements in same order as
corresponding traversal method shown

e Recursive methods don’t convert as easily: must
phrase in terms of next() and hasNext()

 Similar to how we implemented Skiplterator: do some
prep work before returning from next()

e So, let’s start with levelOrder!



Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root) {
todo = new Queuelist<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

h

public void reset() {
todo.clear();
// empty queue, add root
1f (!'root.i1skEmpty()) todo.enqueue(root);



public

}

public

Level-Order lterator

boolean hasNext() {
return !todo.isEmpty();

E next() {

BinaryTree<E> current = todo.dequeue();

E result = current.value();

1f (lcurrent.left().iskEmpty())
todo.enqueue(current.left());

1f (lcurrent.right().isEmpty())
todo.enqueue(current.right());

return result;



Pre-Order lterator

e Basic idea

* Should return elements in same order as
processed by pre-order traversal method

e Must phrase in terms of next() and hasNext()

e We “simulate recursion” with stack

e The stack holds “partially processed” nodes



Pre-Order lterator

e Qutline: node - left tree — right tree
|. Constructor: Push root onto todo stack
2. On call to next():

 Pop node from stack

* Push right and then left children of popped node onto
stack

e Return node’s value

3. On call to hasNext():
e return !stack.isEmpty()



Pre-Order lterator

Visit node, then each node in left subtree, then
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Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.
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Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.
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Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.
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Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.
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Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.
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Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset() {
todo.clear(); // stack i1s empty; push on root
1f ((!root.isEmpty()) todo.push(root);



Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

1f (lold.right().isEmpty())
todo.push(old.right());

1f (lold.left().i1sEmpty())
todo.push(old.left());

return result;



Tree Traversal (Practice) Problems

* Prove that levelOrder() is correct: that is, that
it touches the nodes of the tree in the correct
order (Hint: induction by level)

* Prove that levelOrder() takes O(n) time,
where n is the size of the tree

* Prove that the PreOrder (LevelOrder)
Iterator visits the nodes in the same order as
the PreOrder (LevelOrder) traversal method



In-Order lterator

e Qutline: left - node - right
|. Push left children (as far as possible) onto stack
2. On call to next():

* Pop node from stack
* Push right child and follow left children as far as possible

e Return node’s value

3. On call to hasNext():

e return !stack.isEmpty()



In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
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In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
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In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
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In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
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In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
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In-Order lterator

Each node is visited after all nodes in left subtree
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In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
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Post-Order lterator

o Left as an exercise...



Alternative Tree Representations

Green e Total # “slots” = 4n
T e Since each BinaryTree
Blue Violet maintains a reference to

/\ left, right, parent, value

Orange  Yellow e 2-4x more overhead than

/\ vector, SLL, array, ...

. e But trees capture
Indigo Red g
successor and predecessor
relationships that other
data structures don'’ t...



Array-Based Binary Trees

* Encode structure of tree in array indexes

e Put root at index O

* Where are children of node i?
e Children of node i are at 2it+| and 2i+2

* Look at example

* Where is parent of node j?
e Parent of node j is at (j-1)/2



ArrayTree Tradeoffs

* Why are ArrayTrees good!

e Save space for links
* No need for additional memory allocated/garbage
collected

* Works well for full or complete trees
e Complete: All levels except last are full and all gaps are at right

e “A complete binary tree of height h is a full binary tree with 0 or
more of the rightmost leaves of level h removed”

* Why bad?
e Could waste a lot of space

* Tree of height of n requires 2"*'-1 array slots even if only
O(n) elements



