CSCI 136
Data Structures &
Advanced Programming

Lecture 22
Spring 2018
Profs Bill & Jon

Administrative Details

e CS Colloquium!?!
* Meets (almost) every Friday at 2:30pm
* Guest speaker presents their research

* Next Friday (4/20) we will have an information
session instead of a normal speaker
* Discussion of courses offered next semester

e Advising about majoring in CS

— We can sign major declaration sheets there

e Food!

Last Time

e The structure5 BinaryTree class
e implementation details
* Quick proofs and theory

* Number of nodes at a given depth d is at most 2¢

e The total number of nodes in a tree of height n is at
most 2")]

* A tree with n nodes has exactly n-| edges

* Implications: if a tree is balanced (full or
complete), the height is log,n

Today

* Traversing trees

* Pre/post/in/level-order traversals
* |terators for each traversal strategy

* Alternative Tree Representations
* Array-based binary trees

Implementing structure> BinaryTree

|

* BinaryTree<E> class Sarent
* |nstance variables value
e BinaryTree: parent, left, right left [right

e E: value J// \\\

null
null
this | this

* public BinaryTree()

e public BinaryTree(E value)

e public BinaryTree(E value, EMPTY BT
BinaryTree<E> left,
BinaryTree<E> right)

Implementing BinaryTree

Connect BinaryTree nodes:

e public void setLeft(Binary Tree<E> newLleft)
public void setRight(BinaryTree<E> newlLeft)
protected void setParent(BinaryTree<E> newParent)
Navigate edges:

e public BinaryTree<E> left()
public BinaryTree<E> right()
public BinaryTree<E> parent()

Interact with BinaryTree data:

e public E value()

public void setValue(E value)
Get an lterator:

e public Iterator<E> iterator()

e public Iterator<E> preorderlterator()
public Iterator<E> postorderlterator|() 2?7
public Iterator<kE> levelorderlteratorterator()

Tree Traversals

* In linear structures, there are only a few basic
ways to traverse the data structure

e Start at one end and visit each element
o Start at the other end and visit each element

* How do we traverse binary trees!?

e (At least) four reasonable mechanisms

Tree Traversals
Marky

/ N\

Ricky Danny

/NN

In-order: “left, node, right” Terry Mikey Davey
Terry, Ricky, Mikey, Marky, Danny, Davey

Pre-order: “node, left, right”
Marky, Ricky, Terry, Mikey, Danny, Davey

Post-order: “left, right, node”
Terry, Mikey, Ricky, Davey, Danny, Marky,

Level-order: visit all nodes at depth 1 before depth 1i+1
Marky, Ricky, Danny, Terry, Mikey, Davey

+
Tree Traversals ./ \7
/ N\
2 3
* Each node is visited before any children. Visit

node, then each node in left subtree, then each
node in right subtree. (node, left, right)

o +¥237

e Pre-order

* |n-order

e Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
(left, node, right)

o 2%3+7

(“pseudocode’)

/+\
* 7
/N
2 3

Tree Traversals

e Post-order

e Each node is visited after its children are visited.
Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)

°« 23%7+
* Level-order (not obviously recursive!)

e All nodes of level 1 are visited before nodes of
level 1+1. (visit nodes left to right on each level)

o +¥723

(“pseudocode’)

Tree Traversals

public void preOrder (BinaryTree t) {
if(t.isEmpty())

+
return; *// \\7

visit(t); // some method

preOrder(t.left()); // \\
preOrder(t.right()); 2 3

For in-order and post-order: just move visit (t)!

But what about level-order???

Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

Level-Order Traversal

T

Blue Violet

T

Orange Yellow

N

Indigo Red

Level-Order Traversal

Green

/\

Blue Violet
/\

Orange Yellow

N

Indigo Red

Level-Order Traversal

Green

/\

Blue _Violet
T

Orange Yellow

N

Indigo Red

-

GB

Level-Order Traversal

Green

/\

Blue Violet

T
Orange Yellow

N

Indigo Red

GBV

Level-Order Traversal

Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

Indigo Red

GBVOY

Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N
Indigo

GBVOYI

Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

GBVOYIR

Level-Order Traversal

* How does level-order work?
* We visit the nodes level by level, left to right

e Hint: we will use a linear structure...

Level-Order Traversal

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

Level-Order Traversal

/\
Blue Violet 1
/\ Green
Orange Yellow] 1
/\ todo queue

Indigo Red

Level-Order Traversal

Green 1
/\ .
Violet
Blue Violet o
Py Blue
Orange Yellow 1
/\ todo queue
Indigo Red

Level-Order Traversal

Green
/\
Blue 1
PNy Violet
Orange Yellow 1
/\ todo queue
Indigo Red

GB

Level-Order Traversal

Green 1
/\
. Yellow
Blue Violet
Py Orange
Orange Yellow 1
/\ todo queue
Indigo Red

GBV

Level-Order Traversal

Green

/\

Blue Violet

Orange

todo queue

GBVO

Level-Order Traversal

Green 1
/\
Red
Blue Violet =
Py Indigo
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOY

Level-Order Traversal

Green
/\
Blue Violet l
Py Red
Orange Yellow 1
/\ todo queue
Indigo GED»

GBVOYI

Level-Order Traversal

Green
/\
Blue Violet
/\ L
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOYIR

Level-Order Tree Traversal

public static <E> void levelOrder (BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> q = new QueuelList<BinaryTree<E>>();
g.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = g.dequeue();
visit(next);
if(!next.left().isEmpty()) g.enqueue(next.left());
if(!next.right().1isEmpty()) g.enqueue(next.right());

|terators

* Provide iterators that implement the different
tree traversal algorithms

* Methods provided by BinaryTree class:
* preorderlterator()
e inorderlterator()
e postorderlterator()

* levelorderlterator()

Implementing the lterators

e Basic idea

e Should return elements in same order as
corresponding traversal method shown

e Recursive methods don’t convert as easily: must
phrase in terms of next() and hasNext()

 Similar to how we implemented Skiplterator: do some
prep work before returning from next()

e So, let’s start with levelOrder!

Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root) {
todo = new Queuelist<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

h

public void reset() {
todo.clear();
// empty queue, add root
1f (!'root.i1skEmpty()) todo.enqueue(root);

public

}

public

Level-Order lterator

boolean hasNext() {
return !todo.isEmpty();

E next() {

BinaryTree<E> current = todo.dequeue();

E result = current.value();

1f (lcurrent.left().iskEmpty())
todo.enqueue(current.left());

1f (lcurrent.right().isEmpty())
todo.enqueue(current.right());

return result;

Pre-Order lterator

e Basic idea

* Should return elements in same order as
processed by pre-order traversal method

e Must phrase in terms of next() and hasNext()

e We “simulate recursion” with stack

e The stack holds “partially processed” nodes

Pre-Order lterator

e Qutline: node - left tree — right tree
|. Constructor: Push root onto todo stack
2. On call to next():

 Pop node from stack

* Push right and then left children of popped node onto
stack

e Return node’s value

3. On call to hasNext():
e return !stack.isEmpty()

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

,/\
(Blue Violet > Blue

T Violet

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

B
/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

GB

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet Orange

T Yellow

Orange Yellow
/\ todo stack

Indigo Red

GBV

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
T Indigo
Blue Violet Red
S Yellow

Yellow
todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
/\
Blue Violet Red
T Yellow

Yellow
todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

T Yellow
Orange

/\ todo stack

Indigo Red

GBVOIR

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

T

Orange Yellow

/\ todo stack

Indigo Red

GBVOIRY

Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset() {
todo.clear(); // stack i1s empty; push on root
1f ((!root.isEmpty()) todo.push(root);

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

1f (lold.right().isEmpty())
todo.push(old.right());

1f (lold.left().i1sEmpty())
todo.push(old.left());

return result;

Tree Traversal (Practice) Problems

* Prove that levelOrder() is correct: that is, that
it touches the nodes of the tree in the correct
order (Hint: induction by level)

* Prove that levelOrder() takes O(n) time,
where n is the size of the tree

* Prove that the PreOrder (LevelOrder)
Iterator visits the nodes in the same order as
the PreOrder (LevelOrder) traversal method

In-Order lterator

e Qutline: left - node - right
|. Push left children (as far as possible) onto stack
2. On call to next():

* Pop node from stack
* Push right child and follow left children as far as possible

e Return node’s value

3. On call to hasNext():

e return !stack.isEmpty()

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

T

Orange Yellow

N

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

reen

Blue Violet Blue

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

T

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
Indigo
Blue Violet Orange
Violet
Yellow
todo stack

BG

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Blue Violet Orange
Violet

Orange | Yellow
/\ todo stack

Indigo Red

BGI

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
/\
Blue Red
Violet
Yellow
todo stack
Indigo

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
/\

Blue
/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

BGIOR

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

T Yellow

Orange
/\ todo stack

Indigo Red

BGIORYV

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

T

Orange Yellow

/\ todo stack

Indigo Red

BGIORVY

Post-Order lterator

o Left as an exercise...

Alternative Tree Representations

Green e Total # “slots” = 4n
T e Since each BinaryTree
Blue Violet maintains a reference to

/\ left, right, parent, value

Orange Yellow e 2-4x more overhead than

/\ vector, SLL, array, ...

. e But trees capture
Indigo Red g
successor and predecessor
relationships that other
data structures don'’ t...

Array-Based Binary Trees

* Encode structure of tree in array indexes

e Put root at index O

* Where are children of node i?
e Children of node i are at 2it+| and 2i+2

* Look at example

* Where is parent of node j?
e Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

* Why are ArrayTrees good!

e Save space for links
* No need for additional memory allocated/garbage
collected

* Works well for full or complete trees
e Complete: All levels except last are full and all gaps are at right

e “A complete binary tree of height h is a full binary tree with 0 or
more of the rightmost leaves of level h removed”

* Why bad?
e Could waste a lot of space

* Tree of height of n requires 2"*'-1 array slots even if only
O(n) elements

