CSCI 136

Data Structures \&
 Advanced Programming

Lecture 21
Spring 2018
Profs Bill \& Jon

Administrative Details

- Lab 7 posted
- Two towers
- Use iterators to solve a challenging problem
- Bitwise operations help

Last Time

- Trees!
- General Idea and Uses
- Terminology
- Some examples
- Expression trees

Today

- The structure5 BinaryTree class
- implementation details
- Some quick proofs and theory
- Traversing trees

Branching Out: Trees

- A tree is a data structure where elements can have multiple successors (called children)
- But still only one predecessor (called parent)

Tree Features

- Trees express hierarchical relationships
- Directed: root to leaf
- Root at the top
- Leaf at the bottom
- Interior nodes in middle
- Parent, children, ancestors, descendants, siblings
- Degree (of node): number of children of node
- Degree (of tree): maximum degree (across all nodes)
- Depth of node: number of edges from root to node
- Height: maximum depth (across all nodes)

Introducing Binary Trees

- Degree of each node <= 2
- Recursively defined. A tree can either be:
- Empty
- Root with left and right subtrees
- Binary Tree: No "inner" node class like SLL; single BinaryTree class does it all
- (Not part of the structure inheritance hierarchy)

Implementing structure5 BinaryTree

- BinaryTree<E> class
- Instance variables
- BinaryTree: parent, left, right
- E: value
- left and right are never null

- If no child, they point to an "empty" tree
- Empty tree T has value null, parent null, left = right = T
- Only empty tree nodes have

null	
null	
this	
this	

EMPTY BT null value

Implementing BinaryTree

- BinaryTree class
- Instance variables

- BT parent, BT left, BT right, E value

Implementing BinaryTree

- Many (!) methods: See BinaryTree javadoc page
- All "left" methods have equivalent "right" methods
- public BinaryTree()
- // generates an empty node (EMPTY)
- // parent and value are null, left=right=this
- public BinaryTree(E value)
- // generates a tree with a non-null value and two empty (EMPTY) subtrees
- public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
- // returns a tree with a non-null value and two subtrees
- public void setLeft(BinaryTree<E> newLeft)
- // sets left subtree to newLeft
- // re-parents newLeft by calling newLeft.setParent(this)
- protected void setParent(BinaryTree<E> newParent)
- // sets parent subtree to newParent
- // called from setLeft and setRight to keep all "links" consistent

Implementing BinaryTree

- Methods:
- public BinaryTree<E> left()
- // returns left subtree
- public BinaryTree<E> parent()
- // post: returns reference to parent node, or null
- public boolean isLeftChild()
- // returns true if this is a left child of parent
- public E value()
- // returns value associated with this node
- public void setValue(E value)
- // sets the value associated with this node
- public int size()
- // returns number of (non-empty) nodes in tree
- public int height()
- // returns height of tree rooted at this node
- But where's "remove" or "add"?!?!

BT Questions/Proofs

- Prove
- The number of nodes at depth n is at most 2^{n}.
- The number of nodes in tree of height n is at most $2^{(n+1)}-1$.
- A tree with n nodes has exactly n - I edges

BT Questions/Proofs

Prove: Number of nodes at depth $\mathrm{d} \geq 0$ is at most 2^{d}. Idea: Induction on depth d of nodes of tree

Base case: $\mathrm{d}=0$: I node. $\mathrm{I}=2^{\circ} \checkmark$
Induction Hyp.: For some $\mathrm{d} \geq 0$, there are at most $2^{\text {d }}$ nodes at depth d.
Induction Step: Consider depth $d+1$. It has at most 2 nodes for every node at depth d.
Therefore it has at most $2 * 2^{\mathrm{d}}=2^{\mathrm{d}+1}$ nodes \checkmark

BT Questions/Proofs

Prove that any tree of $n \geq 1$ nodes has $n-1$ edges
Idea: Induction on number of nodes
Base case: $\mathrm{n}=1$. There are no edges \checkmark
Induction Hyp: Assume that, for some $n \geq 1$, every tree of n nodes has exactly $n-1$ edges.
Induction Step: Let T have $\mathrm{n}+1$ nodes. Show it has exactly n edges.

- Remove a leaf v (and its single edge) from T
- Now Thas nodes, so it has n-I edges
- Now add v (and its single edge) back, giving n+I nodes and n edges.

Representing Knowledge

- Trees can be used to represent knowledge
- Example: InfiniteQuestions game
- We often call these trees decision trees
- Leaf: object
- Internal node: question to distinguish objects
- Move down decision tree until we reach a leaf node
- Check to see if the leaf is correct
- If not, add another question, make new and old objects children
- Let's play....

Building Decision Trees

- Gather/obtain data
- Analyze data
- Make greedy choices: Find good questions that divide data into halves (or as close as possible)
- Construct tree with shortest height
- In general this is a *hard* problem!
- Example

$_$yellow

Representing Arbitrary Trees

- What if nodes can have many children?
- Example: Game trees
- Replace left/right node references with a list of children (Vector, SLL, etc)
- Allows getting "jih" child
- Should provide method for getting degree of a node
- Degree 0 Empty list No children Leaf
- We will use this idea in the Lexicon Lab

Tree Traversals

- In linear structures, there are only a few basic ways to traverse the data structure
- Start at one end and visit each element
- Start at the other end and visit each element
- How do we traverse binary trees?
- (At least) four reasonable mechanisms

Tree Traversals

In-order: "left, node, right"

Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: "node, left, right"
Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: "left, right, node"
Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: visit all nodes at depth i before depth i+l
Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

Tree Traversals

- Pre-order

2
3

- Each node is visited before any children. Visit node, then each node in left subtree, then each node in right subtree. (node, left, right)
- +*237
- In-order
- Each node is visited after all nodes in left subtree are visited and before any nodes in right subtree. (left, node, right)
- 2*3+7
("pseudocode")

Tree Traversals

- Post-order
- Each node is visited after its children are visited. Visit all nodes in left subtree, then all nodes in right subtree, then node itself. (left, right, node)
- 23*7+
- Level-order (not obviously recursive!)
- All nodes of level i are visited before nodes of level i+I. (visit nodes left to right on each level)
- +*723
("pseudocode")

Tree Traversals

public void preOrder(BinaryTree t) \{
if(t.isEmpty()) return;
touch(t); // some method
preOrder(t.left());
preOrder(t.right());
\}

For in-order and post-order: just move touch(t$)$!

But what about level-order???

Level-Order Traversal

Level-Order Traversal

G

Level-Order Traversal

G

Level-Order Traversal

G B

Level-Order Traversal

G BV

Level-Order Traversal

G BVO

Level-Order Traversal

G BVOY

Level-Order Traversal

G BVOYI

Level-Order Traversal

G BVOYIR

Level-Order Traversal

Level-Order Traversal

Level-Order Traversal

G

Level-Order Traversal

G B

Level-Order Traversal

G BV

Level-Order Traversal

G BVO

Level-Order Traversal

G BVOY

Level-Order Traversal

G BVOYI

Level-Order Traversal

G BVOYIR

Level-Order Tree Traversal

```
public static <E> void levelOrder(BinaryTree<E> t) {
    if (t.isEmpty()) return;
    // The queue holds nodes for in-order processing
    Queue<BinaryTree<E>> q = new QueueList<BinaryTree<E>>();
    q.enqueue(t); // put root of tree in queue
    while(!q.isEmpty()) {
        BinaryTree<E> next = q.dequeue();
        touch(next);
        if(!next.left().isEmpty()) q.enqueue( next.left() );
        if(!next.right().isEmpty()) q.enqueue(next.right());
    }
}
```

