
CSCI 136
Data Structures &

Advanced Programming

Lecture 17
Spring 2018

Profs Bill & Jon

Administrative Details

• Congratulations
• Lab 7: PostScript
• Will be posted over Spring Break
• Can’t wait!?

• Read about it in Java Structures: Section 10.5

• No partners this time
• Review before lab & come to lab with design doc

2

Last Time : Linear Structures

• Linear Interface
• AbstractLinear
• Stacks
• StackArray
• StackList
• StackVector

3

Today: Linear Structures

• Stack Applications
• Postfix expressions
• Postscript
• Program Stack

• Queues
• Implementation Details
• Applications

• Iterators

4

The Structure5 Universe (next)

The Linear Hierarchy
• Linear interface extends Structure

• add(E val)
• empty()
• get()
• remove(),
• size()

• AbstractLinear (partially) implements Linear
• AbstractStack class (partially) extends AbstractLinear

• Essentially introduces “stack-ish” names for methods
• push(E val) is add(E val)
• pop() is remove()
• peek() is get()

6

Building The Hierarchy
• We extend AbstractStack to make “concrete”

Stack types
• StackArray<E>

• holds an array of type E
• add/remove at high end

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth

• StackList<E>
• A singly-linked list with add/remove at head

• For each, we implement add, empty, get, remove, size directly
• push, pop, peek are indirectly implemented by abstract class

7

Stack Applications

• The Stack implementation is simple, but
there are many applictaions
• Evaluating mathematical expressions
• Searching (Depth-first search)
• Removing recursion for optimization
• …

8

See book for details because
this is VERY useful!

Evaluating Arithmetic Expressions

• Computer programs regularly use stacks to
evaluate arithmetic expressions

• Example: x*y+z
• First rewrite as xy*z+

• we’ll look at this rewriting process in more detail soon

• Then:
• push x
• push y
• * (pop twice, multiply popped items, push result)
• push z
• + (pop twice, add popped items, push result)

9

Converting Expressions

• We (humans) primarily use infix notation to evaluate
expressions
• (x+y)*z

• Computers traditionally used postfix (also called
Reverse Polish) notation
• xy+z*
• Operators appear after operands, parentheses are not

necessary

• How do we convert between the two?
• Compilers do this for us

Converting Expressions

• Example: x*y+z*w
• Conversion

1) Add full parentheses to preserve order of
operations
((x*y)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw*)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp
• While there are input �tokens� (i.e., symbols) left:

• Read the next token from input.
• If the token is a value, push it onto the stack.
• Else, the token is an operator that takes n arguments.

• (It is known a priori that the operator takes n arguments.)
• If there are fewer than n values on the stack ® error.
• Else, pop the top n values from the stack.

– Evaluate the operator, with the values as arguments.
– Push the returned result, if any, back onto the stack.

• The top value on the stack is the result of the calculation.
• Note that results can be left on stack to be used in future

computations:
• Eg: 3 2 * 4 + followed by 5 / yields 2 on top of stack

Example

• (x*y)+(z*w) → xy*zw*+
• Evaluate xy*zw*+ :

• Push x
• Push y
• Mult: Pop y, Pop x, Push x*y
• Push z
• Push w
• Mult: Pop w, Pop z, Push z*w
• Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
• Result is now on top of stack

• Try with: w=3, x=4, y=5, z=6

Preview: PostScript

• PostScript is a programming language used for
generating vector graphics
• Best-known application: describing pages to printers

• It is a stack-based language
• Values are put on stack
• Operators pop values from stack, put result back on
• There are numeric, logic, string values
• Many operators

• Let’s try it: The ‘gs’ command runs a PostScript
interpreter….

• You’ll be writing a (tiny part of) gs in lab soon....

Preview: PostScript

• Types: numeric, boolean, string, array, dictionary
• Operators: arithmetic, logical, graphic, …
• Procedures
• Variables: for objects and procedures
• PostScript is just as powerful as Java, Python, ...

• Not as intuitive
• Easy to automatically generate

• RNAbows

http://rna.williams.edu/rnabows/

Stacks vs. Queues

• Stacks are LIFO (Last In First Out)
• Queues are FIFO (First In First Out)

• Another linear data structure (implements Linear
interface)

• Queue interface methods: enqueue (add), dequeue (remove),
getFirst (get), peek (get)

tail head

Queues

• Examples:
• Lines at movie theater, grocery store, etc.
• OS event queue (keeps keystrokes, mouse clicks,

etc, in order)
• Printers
• Routing network traffic (more on this later)

Queue Interface

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);
public E dequeue();
public E getFirst(); //value not removed
public E peek(); //same as get()

}

Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

}

QueueVector
class QueueVector<E> implements Queue<E> {

protected Vector<E> data;
}

QueueList
class QueueList<E> implements Queue<E> {

protected List<E> data; //uses a CircularList
}

Tradeoffs:

• QueueArray:
• enqueue is O(1)
• dequeue is O(1)
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1) (but O(n) in worst case - ensureCapacity)
• dequeue is O(n)

• QueueList:
• enqueue is O(1) (addLast)
• dequeue is O(1) (CLL removeFirst)

QueueArray

• Let�s look at an example…
• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

tail head

B C

en
qu

eu
e(

C
)

de
qu

eu
e(

)
head points to front of

queue; tail points to next
empty space (where next

item will be added)

head and tail “wrap
around” array;

when queue is full,
head == tail

After wrap around,
head > tail in some

cases!

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public QueueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public void enqueue(E item) {
assert (count < data.length) : ”The queue is full.";
int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
assert (count > 0) :"The queue is empty.";
E value = (E)data[head];
data[head] = null;
head = (head + 1) % data.length;
count--;
return value;

}

public boolean empty() {
return count>0;

}

