
[TAP:VMUGW] Merge vs Quick

1

• Which of the following is false?

A. Both sorting algorithms have the same

best case run time complexity

B. Both sorting algorithms have the same

average case run time complexity

C. Both sorting algorithms have the same

worst case run time complexity

D. They are all true.

E. Whatever

Administrative Details

• Mid-term exam is Wednesday, March 14
• During your normal lab session

• You’ll have approximately 1 hour & 45 minutes (if you
come on time!)

• Closed-book: Covers Chapters 1-7 & 9, handouts,
and all topics up through Sorting

• A “sample” mid-term and study sheet are available
online

• Linear Structures

• Stack

• Applications

Today’s Outline

3

Linear Structures

• What if the application you’re working on

restricts where elements are inserted and

removed?

4

Linear Structures

• Approaches

• Use existing structures (vector, linked list)

• Define new simplified structures

• Less functionality can result in:

• Simpler implementation

• Greater efficiency

• Less room for error?

5

Stacks

• Examples: stack of trays or cups

• Can only take tray/cup from top of stack

• What methods do we need to define?

• Stack interface methods

• New terms (only) associated with stacks

• Push

• Pop

• Peek

6

Implementation (in structure5)

• Stack interface

• Defines pop/push/peek methods

• 3 classes implementing the stack
interface:
• StackArray

• int top, Object data[]

• Add/remove from index top

• StackVector
• Vector data

• Add/remove from tail

• StackList
• SLL data

• Add/remove from head 7

• Linear Structures

• Stack

• Applications

Today’s Outline

11

Mazes

• How can we use a stack to solve a maze?

• Properties of mazes:

• We model a maze as a 2-d array of cells

• There is a start cell and one or more finish cells

• Goal: Find path from start to finish

Solving Mazes
• We’ll use two objects to solve our maze:

• Position: Info about a single cell

• Maze: Grid of Positions

• General strategy (backtracking search):

• Use stack to keep track of path from start

• Go one way (“push”)

• If we get stuck, go back (“pop”) and try a

different way

• We will eventually either find a solution or
exhaust all possibilities

Position Class

• Represent position in maze as (x,y)

coordinate

• Instance variables: int row, int col, boolean

visited, boolean open

• Methods:

• Getters and setters

• equals()

• toString()

14

Maze Class

• Represent position in maze as (x,y)

coordinate

• Instance variables: Position start, Position

finish, Position[][] board

• Methods:

• Getters and setters

• toString()

• Position nextAdjacent(Position

current)
15

public Position nextAdjacent(Position cur) {

Position next = board[cur.getRow()-1][cur.getCol()];

if (next.isOpen() && !next.isVisited()) {

return next;

}

next = board[cur.getRow()][cur.getCol()+1];

if (next.isOpen() && !next.isVisited()) {

return next;

}

next = board[cur.getRow()+1][cur.getCol()];

if (next.isOpen() && !next.isVisited()) {

return next;

}

next = board[cur.getRow()][current.getCol()-1];

if (next.isOpen() && !next.isVisited()) {

return next;

}

return null;

}
16

RecSolver Class

17

