
CSCI 136
Data Structures &

Advanced Programming

Lecture 16
Spring 2018

Profs Bill & Jon

Announcements

• Mid-Term Review Session
• Tonight (3/12), 7:00-8:00 pm in TPL 203
• No prepared remarks, so bring questions!

• Modified (extra) office hours (see calendar)
• Mid-term exam is Wednesday, March 14

• During your normal lab session
• You’ll have 1 hour & 45 minutes (if you come on time!)
• Closed-book
• Covers Chapters 1-7 & 9 and all topics up through sorting
• A “sample” mid-term and study sheet are available online

• See Handouts & Problem Sets

2

http://cs.williams.edu/~cs136/
http://cs.williams.edu/~cs136/handouts+problems.html

Last Time
• Sorting Wrap-Up (Merge and Quick)
• Problem Solving Day

3

Today
• Linear Structures

• The Linear Interface (LIFO & FIFO)
• The AbstractLinear and AbstractStack classes

• Stack Implementations
• StackArray, StackVector, StackList,

• Stack applications
• Expression Evaluation
• PostScript: Page Description & Programming

4

Linear Structures

• What if we want to impose access restrictions
on our lists?
• I.e., we only provide one way to add and remove

elements from list
• No longer provide access to middle list elements

• Key Examples: removal order depends on the
order that elements were added
• LIFO: Last In First Out
• FIFO: First In First Out

5

Examples

• FIFO: First In – First Out (Queue)
• Line at dining hall
• Data packets arriving at a router

• LIFO: Last In – First Out (Stack)
• Pile of trays at dining hall
• Java Virtual Machine stack

6

The Structure5 Universe (next)

Linear Interface

• How should Linear interface differ from List?
• Should have fewer methods than List interface since

we are limiting access …
• Methods:
• Inherits all of the Structure interface methods

• add(E value) – Add value to the structure.
• E remove(E o) – Remove value o from the structure.
• size(), isEmpty(), clear(), contains(E val), …

• Adds
• E get() – Preview the next object to be removed.
• E remove() – Remove the next value from the structure.
• boolean empty() – same as isEmpty()

8

Linear Structures

• Why no �random access�?
• I.e., no access to middle of list

• More restrictive than general List structures
• But less functionality can result in:

• Simpler implementation
• Greater efficiency

• Approaches
• Use existing structures (Vector, LinkedList), or

• Use same underlying organization, but simplified
9

Stacks

• Examples: pile of trays or cups
• Can only take tray/cup from top of pile

• What methods do we need to define?
• Stack interface methods

• New terms: push, pop, peek
• Only use push, pop, peek when talking about

stacks
• push = add to top of stack
• pop = remove from top of stack
• peek = look at top of stack (do not remove)

10

Notes about Terminology
• When using stacks:

• push = add
• pop = remove
• peek = get

• In Stack interface, push/pop/peek methods call
add/remove/get methods that are defined in
Linear interface

• But �add� is not mentioned in Stack interface (it
is inherited from Linear)

• Stack interface extends Linear interface
• Interfaces extend other interfaces
• Classes implement interfaces 11

Stack Implementations

• Array-based stack
• int top, Object data[]
• Add/remove from index top

• Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no �wasted� space) 12

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no �wasted� space) 13

Summary Notes on The Hierarchy
• Linear interface extends Structure

• add(E val)
• empty()
• get()
• remove(),
• size()

• AbstractLinear (partially) implements Linear
• AbstractStack class (partially) extends AbstractLinear

• Essentially introduces “stack-ish” names for methods
• push(E val) is add(E val)
• pop() is remove()
• peek() is get()

14

Building The Hierarchy
• Now we can extend AbstractStack to make

“concrete” Stack types
• StackArray<E>

• holds an array of type E
• add/remove at high end

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth

• StackList<E>
• A singly-linked list with add/remove at head

• For each, we implement add, empty, get, remove, size directly
• push, pop, peek are indirectly implemented by abstract class

15

The Structure5 Universe (so far)

Stack Applications

• The Stack implementation is simple, but
there are many applictaions
• Evaluating mathematical expressions
• Searching (Depth-first search)
• Removing recursion for optimization
• Simulations
• …

17

Evaluating Arithmetic Expressions

• Computer programs regularly use stacks to
evaluate arithmetic expressions

• Example: x*y+z
• First rewrite as xy*z+

• we’ll look at this rewriting process in more detail soon

• Then:
• push x
• push y
• * (pop twice, multiply popped items, push result)
• push z
• + (pop twice, add popped items, push result)

18

Converting Expressions

• We (humans) primarily use infix notation to evaluate
expressions
• (x+y)*z

• Computers traditionally used postfix (also called
Reverse Polish) notation
• xy+z*
• Operators appear after operands, parentheses are not

necessary

• How do we convert between the two?
• Compilers do this for us

