
CSCI 136
Data Structures &

Advanced Programming

Lecture 14
Spring 2018

Profs Bill & Jon

Announcements
• Lab 5 Today

• Submit partners!
• Challenging, but shorter and a partner lab – more time for

exam prep!

• Mid-term exam is Wednesday, March 14
• During your normal lab session
• You’ll have approximately 1 hour & 45 minutes (if you

come on time!)
• Closed-book: Covers Chapters 1-7 & 9, handouts, and all

topics up through Sorting
• A “sample” mid-term and study sheet will be available

online

2

Last Time

• Basic Sorting Summary
• Comparator interfaces for flexible sorting
• More Efficient Sorting Algorithms
• MergeSort

3

Today
• Sorting Wrap-Up (Merge and Quick)
• Linear Structures

• The Linear Interface (LIFO & FIFO)
• The AbstractLinear and AbstractStack classes

• Stack Implementations
• StackArray, StackVector, StackList,

• Stack applications
• Expression Evaluation
• PostScript: Page Description & Programming
• Mazerunning (Depth-First-Search)

4

Merge Sort

• A divide and conquer algorithm
• Merge sort works as follows:

• Base case:
• If the list is of length 0 or 1, then it is already sorted.

Return the sorted list.
• Divide the unsorted list into two sublists of about half the

size of original list.
• Recursive call:

• Sort each sublist by re-applying merge sort.
• Merge the two sublists back into one sorted list.

5

Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge

6

Transylvanian Merge Sort Folk Dance

https://www.youtube.com/watch?v=XaqR3G_NVoo

Merge Sort
• How would we implement it?
• Pseudocode:
//recursively mergesorts A[from..To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from < to)
// find midpoint
mid = (from + to)/2
//sort each half
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
// merge sorted lists
merge(A, from, to)

But `merge` hides a number of important details….
7

Merge Sort
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)?
• “Clever” implementation “ping-pongs” between 2 arrays

• Need an extra array, so really O(2n)!
• But O(2n) = O(n)

8

Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge

log n

log n

merge takes at most n comparisons per line

9

Merge Sort

• Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort: O(n2)
• Merge sort: O(n log n)

• Are there any problems or limitations with
Merge sort?

• Why would we ever use any other algorithm
for sorting?

11

Problems with Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth
between original array and temporary array

• Can we avoid this?

12

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

13

Recall Merge Sort
private static void mergeSortRecursive(Comparable data[],

Comparable temp[], int low, int high) {
int n = high-low+1;
int middle = low + n/2;

if (n < 2) return; // already sorted

// move lower half of data into temporary storage
for (int i = low; i < middle; i++)

temp[i] = data[i];

// sort lower half of array
mergeSortRecursive(temp, data, low,middle-1);
// sort upper half of array
mergeSortRecursive(data, temp, middle, high);
// merge halves together
merge(data, temp, low, middle, high);

}
14

Quick Sort

// pre: low <= high
// post: data[low..high] in ascending order
public static void quickSortRecursive(Comparable data[],

int low, int high) {
int pivot;

// base case: low and high coincide
if (low >= high) return;

// step 1: split using pivot
pivot = partition(data, low, high);
// step 2: sort small
quickSortRecursive(data, low, pivot-1);
// step 3: sort large
quickSortRecursive(data, pivot+1, high);

}
15

Partition

1. Put first element (pivot) into sorted position
2. When done, all to the left of pivot are

smaller and all to the right are larger
3. Return index of pivot

16

Partition by Hungarian Folk Dance

https://www.youtube.com/watch?v=ywWBy6J5gz8

Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;

if (left < right)
swap(data, left++, right);

else
return left;

while (left < right && data[left] < data[right])
left++;

if (left < right)
swap(data, left, right--);

else
return right;

}
}

17

132 Sorting

right

right

left

left

2 1 43 3 65 0 −1 58 3 42 404

2 1 3 65 0 −1 58 3 424 40 43

2 1 3 65 0 −1 58 424 433 40

2 1 3 0 −1 58 424 433 6540

2 1 3 0 424 433 655840−1

2 1 3 0 424 433 655840−1

2 1 43 3 65 0 −1 58 3 42 440

Figure 6.7 The partitioning of an array’s values based on the (shaded) pivot value 40.
Snapshots depict the state of the data after the statements of the method.

Figure 6.7
Bailey pg 132

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)
• If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

19

Merge vs. Quick

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

20

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot

• Heuristic! No guarantees!

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when elements is <=7
• Switch to selection/insertion sort when the list is

almost sorted (partitions are very unbalanced)
• Heuristic! No guarantees!

21

Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n2) as written, but
can be “optimized” to O(n)

O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c
22

