CSCI I36

Data Structures \& Advanced Programming

Lecture 13
Spring 2018
Profs Bill \& Jon

Administrative Details

- Lab 5 Posted
- Sorting with Comparators
- Midterm Wednesday March 14
- Held in your scheduled Lab (same time and place)
- Study guide and sample exam
- Review session

Last Time

- The Comparable Interface
- Including: how to write a generic static method
- Generic Linear and Binary Search methods
- "Basic" Sorting
- Bubble sort

Today's Outline

- "Basic" Sorting Wrapup
- Bubble, Insertion, Selection Sorts
- Comparator: interface for flexible sorting
- More Efficient Sorting Algorithms
- MergeSort
- QuickSort

Basic Sorting Algorithms

- BubbleSort
- Swaps consecutive elements of a[0..k] until largest element is at $a[k]$; Decrements k and repeats
- InsertionSort
- Assumes $a[0 . \mathrm{k}]$ is sorted and moves $\mathrm{a}[\mathrm{k}+\mathrm{l}]$ across a[0..k] until a[0..k+l] is sorted
- Increments k and repeats
- SelectionSort
- Finds largest item in a[0..k] and swaps it with $\mathrm{a}[\mathrm{k}]$
- Decrements k and repeats

Sorting Preview: Bubble Sort

- Simple sorting algorithm that works by ascending through the list to be sorted, comparing two items at a time, and swapping them if they are in the wrong order
- Repeated until no swaps are needed
- Gets its name from the way larger elements "bubble" to the end of the list

Bubble Sort

51329

- First Pass:
- (5 — 329) $\rightarrow\left(\begin{array}{l}1 \\ 5\end{array} 329\right)$
- ($15 \underline{3} 29$) $\rightarrow\left(\begin{array}{l}1 \\ 3\end{array} 529\right)$
- ($135 \underline{2} 9) \rightarrow(13 \underline{2} 59)$
- (1325 g) \rightarrow (1325 9)
- Third Pass:
- (I $\underline{2} 359$) -> (I $\underline{2} 359$)
- ($12 \underline{2} 59$) -> ($12 \underline{3} 59$)
- Fourth Pass:
- (I $\underline{2} 359$) -> (I $\underline{2} 359$)
- Second Pass:
- (I $\underline{3} 259) \rightarrow(1 \underline{3} 259)$
- ($13 \underline{2} 59$) $\rightarrow(1 \underline{2} 359)$
- ($123 \underline{5} 9) \rightarrow(123 \underline{5} 9)$

Bubble Sort

- Simple sorting algorithm that works by ascending through the list to be sorted, comparing two items at a time, and swapping them if they are in the wrong order
- Repeated until no swaps are needed
- Gets its name from the way larger elements "bubble" to the end of the list
- Time complexity?
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Space complexity?
- $\mathrm{O}(\mathrm{n})$ total (no additional space is required)

Sorting Preview: Insertion Sort

- Simple sorting algorithm that works by building a sorted list one entry at a time
- Sorted list in low region of the array
- To-be-sorted part in upper region
- Each time you "grow" your sorted region, you swap it backwards into its sorted location

Sorting Preview: Insertion Sort

- 5	7	0	3	4	2	6	I
- 5	7	0	3	4	2	6	I
- 0	5	7	3	4	2	6	I
- 0	3	5	7	4	2	6	I
- 0	3	4	5	7	2	6	I
- 0	2	3	4	5	7	6	I
- 0	2	3	4	5	6	7	I
- 0	1	2	3	4	5	6	7

Red: sorted region.
Each round, swap the first unsorted item back into sorted region

Sorting Preview: Insertion Sort

- Less efficient on large lists than more advanced algorithms
- Advantages:
- Simple to implement and efficient on small lists
- Efficient on data sets which are already substantially sorted
- Time complexity
- $O\left(n^{2}\right)$
- Space complexity
- O(n)

Sorting Preview: Selection Sort

The algorithm works as follows:

- Find the maximum value in the list
- Swap it with the value in the last position
- Repeat the steps above for remainder of the list (ending at the second to last position)

Sorting Preview: Selection Sort

| - 11 | 3 | 27 | 5 | 16 | Swap 27 with 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - 11 | 3 | 16 | 5 | $\underline{27}$ | Swap 16 with 5 |
| - 11 | 3 | 5 | $\underline{16}$ | $\underline{27}$ | Swap 11 with 5 |
| - | 3 | 11 | 16 | 27 | Swap 5 with 3 |
| - 3 | $\mathbf{5}$ | 11 | 16 | $\underline{27}$ | Done! |

Sorting Preview: Selection Sort

- Similar to insertion sort
- Performs worse than insertion sort in general
- Noted for its simplicity and performance advantages when compared to complicated algorithms
- Time Complexity:
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Space Complexity:
- O(n)

Basic Sorting Algorithms (All Run in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Time)

- BubbleSort
- Always performs cn^{2} comparisons and might need to perform cn^{2} swaps
- InsertionSort
- Might need to perform cn^{2} comparisons and cn^{2} swaps
- SelectionSort
- Always performs cn^{2} comparisons but only $\mathrm{O}(\mathrm{n})$ swaps

Swap!

- The "Basic" sorts all use a utility method: swap. How would you implement swap?

```
private static void swap(int[] a, int i, int j) {
    int temp = a[i];
    a[i] = a[j];
    a[j] = temp;
}
```


Aside: Lower Bound Notation

Definition: A function $f(n)$ is $\Omega(g(n))$ if for some constant c >0 and all $\mathrm{n} \geq \mathrm{n}_{0}$

$$
f(n) \geq c g(n)
$$

So, $f(n)$ is $\Omega(g(n))$ exactly when $g(n)$ is $\mathrm{O}(f(n))$
The previous slide says that all three sorting algorithms have time complexity

- $O\left(\mathrm{n}^{2}\right)$: Never use more than cn^{2} operations
- $\boldsymbol{\Omega}\left(\mathrm{n}^{2}\right)$: Sometimes use at least cn^{2} operations

When $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$ we write:

$$
\mathrm{f}(\mathrm{n}) \text { is } \boldsymbol{\theta}(\mathrm{g}(\mathrm{n}))
$$

Comparators

- Limitations with Comparable interface?
- Comparable permits 1 order between objects
- What if compareto() isn't the desired ordering?
- What if Comparable isn't implemented?
- Solution: Comparators

Comparators (Ch 6.8)

- A comparator is an object that contains a method that is capable of comparing two objects
- Sorting methods can be written to apply a Comparator to two objects when a comparison is to be performed
- Different comparators can be applied to the same data to sort in different orders or on different keys

```
public interface Comparator <E> {
    // pre: a and b are valid objects
    // post: returns a value <, =, or > than 0 determined by
    // whether a is less than, equal to, or greater than b
    public int compare(E a, E b);
}
```


Example

```
    class Patient {
        protected int age;
        protected String name;
        public Patient (String n, int a) { name = n; age = a; }
        public String getName() { return name; }
        public int getAge() { return age; }
    }
    class NameComparator implements Comparator <Patient>{
        public int compare(Patient a, Patient b) {
            return a.getName().compareTo(b.getName());
            }
        // Note: No constructor; a "do-nothing" constructor is added by Java
    }
```

```
    public void sort(T a[], Comparator<T> c) {
        if (c.compare(a[i], a[max]) > 0) {...}
    }
```

 sort(patients, new NameComparator());

Comparable vs Comparator

- Comparable Interface for class X
- Permits just one order between objects of class X
- Class X must implement a compareTo method
- Changing order requires rewriting compareTo
- And then recompiling class X
- Comparator Interface
- Allows creation of "compator classes" for class X
- Class X isn't changed or recompiled
- Multiple Comparators for X can be developed
- Ex: Sort Strings by length (alphabetically for same-length)
- Ex: Sort names by last name instead of first name

Selection Sort with Comparator

```
public static <E> int findPosOfMax(E[] a, int last,
                                    Comparator<E> c) {
```

```
int maxPos = 0 // A wild guess
```

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)
for(int i = 1; i <= last; i++)
if (c.compare(a[maxPos], a[i]) < 0)
if (c.compare(a[maxPos], a[i]) < 0)
maxPos = i;
maxPos = i;
return maxPos;
}
public static <E> void selectionSort(E[] a, Comparator<E> c) {
for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);
}
}

```
- The same array can be sorted in multiple ways by passing different Comparator<E> values to the sort method;

\section*{Merge Sort}
- A divide and conquer algorithm
- Merge sort works as follows:
- Base case:
- If the list is of length 0 or I, then it is already sorted. Return the sorted list.
- Divide the unsorted list into two sublists of about half the size of original list.
- Recursive call:
- Sort each sublist by re-applying merge sort.
- Merge the two sublists back into one sorted list.

\section*{Merge Sort}

- [8 \(\left.14 \begin{array}{lll}8 & 29 & \mathrm{I}\end{array}\right]\left[\begin{array}{llll}17 & 39 & 16 & 9\end{array}\right] \quad\) split
- \([814]\left[\begin{array}{cc}29 & 1]\end{array}\right.\)
- [8] [14]
- \([8\) 14]
[29]
[I]
\(\left[\begin{array}{ll}17 & 39\end{array}\right]\)
[16
9]
split
- [lllll\(\left[\begin{array}{llll}1 & 8 & 14 & 29\end{array}\right]\)
- \(\begin{array}{llll}1 & 8 & 9 & 14\end{array}\)
[17] [39]

\section*{Merge Sort}
- How would we implement it?
- Pseudocode:
```

//recursively mergesorts A[from..To] "in place"
void recMergeSortHelper(A[], int from, int to)
if (from < to)
// find midpoint
mid = (from + to)/2
//sort each half
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
// merge sorted lists
merge(A, from, to)

```

But `merge` hides a number of important details.... \({ }_{25}\)```

