
CSCI 136
Data Structures &

Advanced Programming

Lecture 13
Spring 2018

Profs Bill & Jon

Administrative Details

• Lab 5 Posted
• Sorting with Comparators

• Midterm Wednesday March 14
• Held in your scheduled Lab (same time and place)
• Study guide and sample exam

• Review session

2

Last Time

• The Comparable Interface
• Including: how to write a generic static method
• Generic Linear and Binary Search methods

• “Basic” Sorting
• Bubble sort

3

Today�s Outline

• “Basic” Sorting Wrapup
• Bubble, Insertion, Selection Sorts

• Comparator: interface for flexible sorting

• More Efficient Sorting Algorithms
• MergeSort
• QuickSort

4

Basic Sorting Algorithms
• BubbleSort
• Swaps consecutive elements of a[0..k] until largest

element is at a[k]; Decrements k and repeats

• InsertionSort
• Assumes a[0..k] is sorted and moves a[k+1]

across a[0..k] until a[0..k+1] is sorted
• Increments k and repeats

• SelectionSort
• Finds largest item in a[0..k] and swaps it with a[k]
• Decrements k and repeats

5

Sorting Preview: Bubble Sort
• Simple sorting algorithm that works by ascending

through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

• Repeated until no swaps are needed
• Gets its name from the way larger elements "bubble"

to the end of the list

Bubble Sort

• First Pass:
• (5 1 3 2 9) ® (1 5 3 2 9)
• (1 5 3 2 9) ® (1 3 5 2 9)
• (1 3 5 2 9) ® (1 3 2 5 9)
• (1 3 2 5 9) ® (1 3 2 5 9)

• Second Pass:
• (1 3 2 5 9) ® (1 3 2 5 9)
• (1 3 2 5 9) ® (1 2 3 5 9)
• (1 2 3 5 9) ® (1 2 3 5 9)

• Third Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)
• (1 2 3 5 9) -> (1 2 3 5 9)

• Fourth Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)

http://www.youtube.com/watch?v=lyZQPjUT5B4

5 1 3 2 9

http://www.youtube.com/watch?v=lyZQPjUT5B4

Bubble Sort
• Simple sorting algorithm that works by ascending

through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

• Repeated until no swaps are needed
• Gets its name from the way larger elements "bubble"

to the end of the list
• Time complexity?

• O(n2)

• Space complexity?
• O(n) total (no additional space is required)

Sorting Preview: Insertion Sort
• Simple sorting algorithm that works by building a

sorted list one entry at a time
• Sorted list in low region of the array
• To-be-sorted part in upper region
• Each time you “grow” your sorted region, you swap it

backwards into its sorted location

Sorting Preview: Insertion Sort
• 5 7 0 3 4 2 6 1
• 5 7 0 3 4 2 6 1
• 0 5 7 3 4 2 6 1
• 0 3 5 7 4 2 6 1
• 0 3 4 5 7 2 6 1
• 0 2 3 4 5 7 6 1
• 0 2 3 4 5 6 7 1
• 0 1 2 3 4 5 6 7

Red: sorted region.
Each round, swap the first unsorted item back into sorted region

Sorting Preview: Insertion Sort
• Less efficient on large lists than more advanced

algorithms
• Advantages:

• Simple to implement and efficient on small lists
• Efficient on data sets which are already substantially sorted

• Time complexity
• O(n2)

• Space complexity
• O(n)

Sorting Preview: Selection Sort

The algorithm works as follows:
• Find the maximum value in the list
• Swap it with the value in the last position
• Repeat the steps above for remainder of the list (ending at

the second to last position)

Sorting Preview: Selection Sort

• 11 3 27 5 16
• 11 3 16 5 27
• 11 3 5 16 27
• 5 3 11 16 27
• 3 5 11 16 27

Swap 27 with 16
Swap 16 with 5
Swap 11 with 5
Swap 5 with 3
Done!

Sorting Preview: Selection Sort

• Similar to insertion sort
• Performs worse than insertion sort in general
• Noted for its simplicity and performance advantages

when compared to complicated algorithms
• Time Complexity:

• O(n2)

• Space Complexity:
• O(n)

Basic Sorting Algorithms
(All Run in O(n2) Time)

• BubbleSort
• Always performs cn2 comparisons and might need

to perform cn2 swaps

• InsertionSort
• Might need to perform cn2 comparisons and cn2

swaps

• SelectionSort
• Always performs cn2 comparisons but only O(n)

swaps 15

Swap!

• The “Basic” sorts all use a utility method: swap.
How would you implement swap?

private static void swap(int[] a, int i, int j) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;

}

Aside: Lower Bound Notation
Definition: A function f(n) is !(g(n)) if for some
constant c > 0 and all n ≥ n0

" # ≥ % &(#)
So, f(n) is !(g(n)) exactly when g(n) is O(f(n))

The previous slide says that all three sorting algorithms
have time complexity
• O(n2) : Never use more than cn2 operations
•)(n2) : Sometimes use at least cn2 operations

When f(n) is O(g(n)) and f(n) is)(g(n)) we write:
f(n) is *(g(n))

17

Comparators

• Limitations with Comparable interface?
• Comparable permits 1 order between objects

• What if compareTo() isn’t the desired ordering?
• What if Comparable isn’t implemented?

• Solution: Comparators

18

Comparators (Ch 6.8)

• A comparator is an object that contains a method that
is capable of comparing two objects

• Sorting methods can be written to apply a Comparator
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

}

19

Example
class Patient {

protected int age;
protected String name;
public Patient (String n, int a) { name = n; age = a; }
public String getName() { return name; }
public int getAge() { return age; }

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}

// Note: No constructor; a “do-nothing” constructor is added by Java
}

public void sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does
not implement
Comparable or
Comparator!

20

Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method
• Changing order requires rewriting compareTo

• And then recompiling class X

• Comparator Interface
• Allows creation of “compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Ex: Sort Strings by length (alphabetically for same-length)
• Ex: Sort names by last name instead of first name 21

Selection Sort with Comparator

22

public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)

if (c.compare(a[maxPos], a[i]) < 0)
maxPos = i;

return maxPos;
}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;

Merge Sort

• A divide and conquer algorithm
• Merge sort works as follows:

• Base case:
• If the list is of length 0 or 1, then it is already sorted.

Return the sorted list.
• Divide the unsorted list into two sublists of about half the

size of original list.
• Recursive call:

• Sort each sublist by re-applying merge sort.
• Merge the two sublists back into one sorted list.

23

Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge

24

Transylvanian Merge Sort Folk Dance

https://www.youtube.com/watch?v=XaqR3G_NVoo

Merge Sort
• How would we implement it?
• Pseudocode:
//recursively mergesorts A[from..To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from < to)
// find midpoint
mid = (from + to)/2
//sort each half
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
// merge sorted lists
merge(A, from, to)

But `merge` hides a number of important details….
25

