CSCI 136
Data Structures &
Advanced Programming

Lecture 13
Spring 2018
Profs Bill & Jon

Administrative Details

e Lab 5 Posted

e Sorting with Comparators

* Midterm Wednesday March 14

* Held in your scheduled Lab (same time and place)
e Study guide and sample exam

e Review session

Last Time

e The Comparable Interface
* Including: how to write a generic static method
e Generic Linear and Binary Search methods

e “Basic” Sorting
e Bubble sort

Today s Outline

e “Basic” Sorting Wrapup
e Bubble, Insertion, Selection Sorts

e Comparator: interface for flexible sorting

* More Efficient Sorting Algorithms

* MergeSort
e QuickSort

Basic Sorting Algorithms
e BubbleSort

* Swaps consecutive elements of a[0..k] until largest
element is at a[k]; Decrements k and repeats

e |nsertionSort

e Assumes a[0..k] is sorted and moves a[k+1]
across a[0..k] until a[0..k+ 1] is sorted

* Increments k and repeats

e SelectionSort
* Finds largest item in a[0..k] and swaps it with a[k]

* Decrements k and repeats

Sorting Preview: Bubble Sort

* Simple sorting algorithm that works by ascending
through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

* Repeated until no swaps are needed

* Gets its name from the way larger elements "bubble”
to the end of the list

Bubble Sort

51329
e First Pass: e Third Pass:
e (51329)—>(15329) e (12359)->(12359)
e (15329)—>(13529) e (12359)->(12359)
* (13529)—>(13259) e Fourth Pass:
* (13259)->(13259) e (12359)->(12359)

e Second Pass:
e (13259)—>(13259)
e (13259)—>(12359)
e (12359)—>(12359)

http://www.youtube.com/watch?v=lyZQPjUT5B4

http://www.youtube.com/watch?v=lyZQPjUT5B4

Bubble Sort

Simple sorting algorithm that works by ascending
through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

Repeated until no swaps are needed

Gets its name from the way larger elements "bubble”
to the end of the list

Time complexity!?

e O(n?

Space complexity?

e O(n) total (no additional space is required)

Sorting Preview: Insertion Sort

Simple sorting algorithm that works by building a
sorted list one entry at a time

Sorted list in low region of the array

To-be-sorted part in upper region

Each time you “grow” your sorted region, you swap it
backwards into its sorted location

Sorting Preview: Insertion Sort

e AN B N B

T T T T T T

Red sorted region.
Each round, swap the first unsorted item back into sorted reglon

Sorting Preview: Insertion Sort

Less efficient on large lists than more advanced
algorithms
Advantages:

e Simple to implement and efficient on small lists

 Efficient on data sets which are already substantially sorted
Time complexity

e O(n?)

Space complexity

* O(n)

Sorting Preview: Selection Sort

The algorithm works as follows:
* Find the maximum value in the list
e Swap it with the value in the last position

* Repeat the steps above for remainder of the list (ending at
the second to last position)

Sorting Preview: Selection Sort

Oor W W W W

27 L
16 27
5 27
|| 27
|| 27

Swap 27 wit
Swap 16 wit
Swap 11 wit
Swap 5 with
Done!

N 16
N 5
N5
3

Sorting Preview: Selection Sort

Similar to insertion sort

Performs worse than insertion sort in general
Noted for its simplicity and performance advantages
when compared to complicated algorithms

Time Complexity:

o O(n?)

Space Complexity:

* O(n)

Basic Sorting Algorithms
(All Run in O(n?) Time)

e BubbleSort

 Always performs cn? comparisons and might need
to perform cn? swaps

* |nsertionSort

* Might need to perform cn? comparisons and cn?
swaps

o SelectionSort

* Always performs cn? comparisons but only O(n)
SwWaps s

Swap!

e The “Basic” sorts all use a utility method: swap.
How would you implement swap!

private static void swap(int[] a, int 1, int J) {
int temp = a[1];
a[i] = a[Jl;
a[j] = temp;

Aside: Lower Bound Notation

Definition: A function f(n) is £2(g(n)) if for some
constantc > 0 andalln = n,

f(n) = cgn)
So, f(n) is 2(g(n)) exactly when g(n) is O(f(n))

The previous slide says that all three sorting algorithms
have time complexity

 0(n?) : Never use more than cn? operations
 Q(n?) : Sometimes use at least cn? operations

When f(n) is O(g(n)) and f(n) is £(g(n)) we write:
f(n)isO(g(n))

Comparators

e Limitations with Comparable interface!
e Comparable permits 1 order between objects

* What if compareTo() isn’t the desired ordering?
* What if Comparable isn’t implemented?

* Solution: Comparators

Comparators (Ch 6.8)

* A comparator is an object that contains a method that
is capable of comparing two objects

e Sorting methods can be written to apply a Comparator
to two objects when a comparison is to be performed

e Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

Example

Note that Patient does
class Patient {

- not implement
protected int age; Comparable or
protected String name; Comparator!

public Patient (String n, int a) { name = n; age = a; }
public String getName() { return name; }
public int getAge() { return age; }

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {
return a.getName().compareTo(b.getName());

}

// Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {

if (c.compare(a[i], a[max]) > 0) {..}

sort(patients, new NameComparator()); 20

Comparable vs Comparator

e Comparable Interface for class X
* Permits just one order between objects of class X
e Class X must implement a compareTo method
e Changing order requires rewriting compareTo
e And then recompiling class X
e Comparator Interface
* Allows creation of “compator classes” for class X
e Class X isn’t changed or recompiled

e Multiple Comparators for X can be developed
e Ex: Sort Strings by length (alphabetically for same-length)

e Ex: Sort names by last name instead of first name 21

Selection Sort with Comparator

public static <E> int findPosOfMax(E[] a, int last,
Comparator<kE> c) {
int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)
if (c.compare(a[maxPos], a[i]) < 0)
maxPos = 1i;
return maxPos;
}
public static <E> void selectionSort(E[] a, Comparator<iE> c) {
for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}

e The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method; 22

Merge Sort

* A divide and conquer algorithm

* Merge sort works as follows:
e Base case:

e If the list is of length 0 or I, then it is already sorted.
Return the sorted list.

e Divide the unsorted list into two sublists of about half the
size of original list.

e Recursive call:
 Sort each sublist by re-applying merge sort.
* Merge the two sublists back into one sorted list.

23

8 14
8 14
8 4]
8] [14]
8 14]
I

1

Merge Sort

29
29 1]
29]
29] [}
1 29]
14 29]
9 14

|17
17
17
7]
17

9

|6

39
39
39]
[39]
39]
16
17

|6
|6
16
16]
9
| 7
29

4
9.
4
[]

6]
39°
39°

Transylvanian Merge Sort Folk Dance

split
split

merge
merge

merge

24

https://www.youtube.com/watch?v=XaqR3G_NVoo

Merge Sort

* How would we implement it!
* Pseudocode:

//recursively mergesorts A[from..To] “in place”
void recMergeSortHelper (A[], int from, int to)
if (from < to)

// find midpoint

mid = (from + to)/2

//sort each half

recMergeSortHelper (A, from, mid)

recMergeSortHelper (A, mid+1l, to)

// merge sorted lists

merge (A, from, to)

But merge hides a number of important details....

