CSCI 136
Data Structures &
Advanced Programming

Lecture |2
Fall 2018

Profs Bill & Jon

Last Time

o Assertions

e SLL Improvements

* Tail pointers

e Circularly Linked Lists
* Doubly Linked Lists

* Practice with recursion on lists

Today s Outline

The Structureb Universe
Search
The Comparable Interface

“Basic” Sorting
* Bubble, Insertion, Selection Sorts
Comparator interfaces for flexible sorting

More Efficient Sorting Algorithms
e MergeSort, QuickSort

The Structure5 Universe (almost)

AbstractList
/ A \

Vector SinglyLinkedList DoublyLinkedList

The Structure> Universe (so far)

key
Interface Abstract Class Class
Structure
List
AbstractStructure

e

AbstractLlst

il

Vector SinglyLinkedList DoublyLinkedList

Search!

* What is search?
* Locating an element among our data

e Later we will talk about data structures
designed for efficient search
e Search trees (binary, Tries, B-trees, Be-trees)

e Hash tables
e Dictionary interface

e But right now we have the List interface...

Leveraging Order

* I'm thinking of a number between | and 1,000
* How do you guess!

* Brute force search (linear scan) is O(n) in the
worst case

e But natural numbers are ordered
* When data is sorted, binary search!
* BinarySearch. java

Recall : Binary Search

public class BinarySearch {

public static int binarySearch(int a[], int wvalue) {
return recBinarySearch(a, value, 0, a.length-1);

}

protected static int recBinarySearch(int a[], int value, int
low, int high) {
if (low > high) { //value not found
return -1;

} else {
int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) //found!
return mid;
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid+1l, high);
else //search lower half
return recBinarySearch(a, value, low, mid-1);
}

Recall: Binary Search

Why does it work!?

e Because items can be ordered they can be sorted then
searched based on ordering

Why is it fast?

e Cut search space in half with each comparison!
e Runtime???
* O(log,(n)) (# of times we can divide by 2" before we get " |)

Precondition: data is comparable and ordered

If items are not comparable, we typically need
to do a linear search

Linear Search

e Complexity analysis of linear search:
e Best case: O(l)
* Worst case: O(n)
e Average case: O(n)
* Why!?
e Assume all locations equally likely

e The average number of comparisons is
(I +2+ 3+ ... +n)/n=(nt+l)/2, so O(n)

e Here’s a generic linear search method

Generic Linear Search Method

public class LinearSearchGeneric {
// post: returns index of value in a, or -1 if not found
// Note the <E> between static and int: a generic method!
public static <E> int linearSearch(E a[], E value) {
for (int i = 0; i < a.length; i++) {
if (a[i].equals(value)) {
return i;

}

return -1;
}

public static void main(String args[]) {
// search a String array
System.out.println(linearSearch(args, "cow"));
// search an Integer array
Integer odds[] = new Integer[] { 1,3,5,7,9 };
System.out.println(linearSearch(odds, 7));

Linear vs. Binary Search

e Clearly binary is preferable

e But it requires ordered (i.e., sorted) data.
* We need comparable items

e Unlike with equality testing, the Object class
doesn’t define a “compare ()"’ method

* We want a uniform way of saying objects can be
compared, so we can write generic versions of
methods like binary search

e Solution: Use an interface!

Comparable Interface

e Java provides an interface for comparisons between objects

* Provides a replacement for “<” and “>” in recBinarySearch

e Java provides the Comparable interface, which specifies a
method compareTo ()

* Any class that implements Comparable, provides compareTo ()

public interface Comparable<T> {

//post: return < 0 if this smaller than other
return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);

Comparable Example

* Player.java
* Orders basketball players from shortest to tallest

e compareTo() subtracts their heights... why!?

Notes on compareTo()

Notes

e The magnitude of the values returned by compareTo () are
not important.

* We only care if the return value is positive, negative, or 0!
e compareTo() defines a “natural ordering” of Objects

e There’s nothing “natural”’ about it....

* We can use compareTo() to implement sorting algorithms!

Comparable & compareTo

The Comparable interface (Comparable<T>) is part of
the java.lang (not structure5) package.

Other Java-provided structures can take advantage of objects
that implement Comparable

e Strings, or the Arrays class in java.util

Note: Users of Comparable are urged to ensure that
compareTo () and equals () are consistent. That is,

e x.compareTo(y) == 0 exactly when x.equals(y) == true
Note that Comparable limits user to a single ordering

The syntax can get kind of dense

* See BinSearchComparable.java : a generic binary search method
* And even more cumbersome....

ComparableAssociation

e Think back to the WordGen lab...

e Suppose we want an ordered Dictionary, so that we can use binary
search instead of linear scanning

e Structure5 provides a ComparableAssociation class that
implements Comparable.

e The class declaration for ComparableAssociation is

...wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>
Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>

(Yikes!)

e Example: Since Integer implements Comparable, we can write:
ComparableAssociation<Integer, String> myAssoc =
new ComparableAssociation(567, “Bob”);

* We could then sort an array of these!

Sorting Preview: Bubble Sort

* Simple sorting algorithm that works by ascending
through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

* Repeated until no swaps are needed

* Gets its name from the way larger elements "bubble”
to the end of the list

Bubble Sort

51329
e First Pass: e Third Pass:
e (51329)—>(15329) e (12359)->(12359)
e (15329)>(13529) e (12359)->(12359)
* (13529)—>(13259) e Fourth Pass:
* (13259)->(13259) e (12359)->(12359)

e Second Pass:
e (13259)—>(13259)
e (13259)—>(12359)
e (12359)—>(12359)

http://www.youtube.com/watch?v=lyZQPjUT5B4

Bubble Sort

Simple sorting algorithm that works by ascending
through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

Repeated until no swaps are needed

Gets its name from the way larger elements "bubble”
to the end of the list

Time complexity!?

e O(n?

Space complexity?

e O(n) total (no additional space is required)

