
CSCI 136
Data Structures &

Advanced Programming

Lecture 12
Fall 2018

Profs Bill & Jon

Last Time

• Assertions
• SLL Improvements
• Tail pointers
• Circularly Linked Lists

• Doubly Linked Lists
• Practice with recursion on lists

2

Today�s Outline

• The Structure5 Universe
• Search
• The Comparable Interface

• “Basic” Sorting
• Bubble, Insertion, Selection Sorts

• Comparator interfaces for flexible sorting
• More Efficient Sorting Algorithms
• MergeSort, QuickSort

3

The Structure5 Universe (almost)
key

The Structure5 Universe (so far)
key

Search!

• What is search?
• Locating an element among our data

• Later we will talk about data structures
designed for efficient search
• Search trees (binary, Tries, B-trees, Be-trees)

• Hash tables
• Dictionary interface

• But right now we have the List interface…

Leveraging Order

• I’m thinking of a number between 1 and 1,000
• How do you guess?
• Brute force search (linear scan) is O(n) in the

worst case
• But natural numbers are ordered

• When data is sorted, binary search!
• BinarySearch.java

Recall : Binary Search
public class BinarySearch {

public static int binarySearch(int a[], int value) {
return recBinarySearch(a, value, 0, a.length-1);

}

protected static int recBinarySearch(int a[], int value, int
low, int high) {

if (low > high) { //value not found
return -1;

} else {
int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) //found!

return mid;
else if (a[mid] < value) //search upper half

return recBinarySearch(a, value, mid+1, high);
else //search lower half

return recBinarySearch(a, value, low, mid-1);
}

}
}

8

Recall: Binary Search

• Why does it work?
• Because items can be ordered they can be sorted then

searched based on ordering

• Why is it fast?
• Cut search space in half with each comparison!
• Runtime???

• O(log2(n)) (# of times we can divide by `2` before we get `1`)

• Precondition: data is comparable and ordered
• If items are not comparable, we typically need

to do a linear search
9

Linear Search

• Complexity analysis of linear search:
• Best case: O(1)
• Worst case: O(n)
• Average case: O(n)
• Why?

• Assume all locations equally likely
• The average number of comparisons is

(1 + 2 + 3 + ... + n)/n = (n+1)/2, so O(n)
• Here’s a generic linear search method

10

Generic Linear Search Method
public class LinearSearchGeneric {
// post: returns index of value in a, or -1 if not found
// Note the <E> between static and int: a generic method!

public static <E> int linearSearch(E a[], E value) {
for (int i = 0; i < a.length; i++) {

if (a[i].equals(value)) {
return i;

}
}
return -1;

}
public static void main(String args[]) {

// search a String array
System.out.println(linearSearch(args, "cow"));
// search an Integer array
Integer odds[] = new Integer[] { 1,3,5,7,9 };
System.out.println(linearSearch(odds, 7));

}
}

11

Linear vs. Binary Search

• Clearly binary is preferable
• But it requires ordered (i.e., sorted) data.
• We need comparable items
• Unlike with equality testing, the Object class

doesn’t define a “compare()” method
• We want a uniform way of saying objects can be

compared, so we can write generic versions of
methods like binary search

• Solution: Use an interface!

Comparable Interface

• Java provides an interface for comparisons between objects
• Provides a replacement for “<” and “>” in recBinarySearch

• Java provides the Comparable interface, which specifies a
method compareTo()
• Any class that implements Comparable, provides compareTo()

public interface Comparable<T> {
//post: return < 0 if this smaller than other

return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);
}

Comparable Example

• Player.java
• Orders basketball players from shortest to tallest
• compareTo() subtracts their heights… why?

Notes on compareTo()

Notes
• The magnitude of the values returned by compareTo() are

not important.
• We only care if the return value is positive, negative, or 0!

• compareTo() defines a “natural ordering” of Objects
• There’s nothing “natural” about it….

• We can use compareTo() to implement sorting algorithms!

Comparable & compareTo

• The Comparable interface (Comparable<T>) is part of
the java.lang (not structure5) package.

• Other Java-provided structures can take advantage of objects
that implement Comparable
• Strings, or the Arrays class in java.util

• Note: Users of Comparable are urged to ensure that
compareTo() and equals() are consistent. That is,
• x.compareTo(y) == 0 exactly when x.equals(y) == true

• Note that Comparable limits user to a single ordering
• The syntax can get kind of dense

• See BinSearchComparable.java : a generic binary search method
• And even more cumbersome….

ComparableAssociation
• Think back to the WordGen lab…
• Suppose we want an ordered Dictionary, so that we can use binary

search instead of linear scanning
• Structure5 provides a ComparableAssociation class that

implements Comparable.
• The class declaration for ComparableAssociation is

…wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>

Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>

(Yikes!)
• Example: Since Integer implements Comparable, we can write:

ComparableAssociation<Integer, String> myAssoc =
new ComparableAssociation(567, “Bob”);

• We could then sort an array of these!

Sorting Preview: Bubble Sort
• Simple sorting algorithm that works by ascending

through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

• Repeated until no swaps are needed
• Gets its name from the way larger elements "bubble"

to the end of the list

Bubble Sort

• First Pass:
• (5 1 3 2 9) ® (1 5 3 2 9)
• (1 5 3 2 9) ® (1 3 5 2 9)
• (1 3 5 2 9) ® (1 3 2 5 9)
• (1 3 2 5 9) ® (1 3 2 5 9)

• Second Pass:
• (1 3 2 5 9) ® (1 3 2 5 9)
• (1 3 2 5 9) ® (1 2 3 5 9)
• (1 2 3 5 9) ® (1 2 3 5 9)

• Third Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)
• (1 2 3 5 9) -> (1 2 3 5 9)

• Fourth Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)

http://www.youtube.com/watch?v=lyZQPjUT5B4

5 1 3 2 9

http://www.youtube.com/watch?v=lyZQPjUT5B4

Bubble Sort
• Simple sorting algorithm that works by ascending

through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

• Repeated until no swaps are needed
• Gets its name from the way larger elements "bubble"

to the end of the list
• Time complexity?

• O(n2)

• Space complexity?
• O(n) total (no additional space is required)

