
CSCI 136
Data Structures &

Advanced Programming

Lecture 11
Spring 2018

Profs Bill & Jon

Administrative Details
• Lab 4
• A wrong version of LinkedList.java was

posted on the course website.
• If you downloaded the file, please delete it. If you

have it open on your browser, please refresh your
browser. (The honor code applies here.)

• Your starter repo contains the correct version, so
you don't have to do anything if you haven't checked
out the file on the website

• Fill out the Google form by 10am

Last Time
• Singly Linked List Implementations
• Doubly Linked List
• Lab 4: Dummy Nodes

Today

• Assertions
• SLL improvements?

• Tail Pointer
• Circularly Linked Lists

• Doubly Linked Lists – with recursion!

• Search
• Linear
• Binary

4

Assertions

• Pre and post condition comments are useful
to us as programmers, but they aren’t
enforced

• Assertions are a language feature that lets us
test assumptions about our code

• Structure 5 has an Assert class
• Java language now has an assert keyword

Assertions

• Structure5: static method that “just works”
• Assert.pre(<condition>, “Error Msg”);

• Java assert: must run code with -ea flag
• assert <condition>;
• assert <condition> : “Error Msg”;

java -ea AssertionTest

Linked List Improvements: tail

• Which of these List methods would be faster if the
SLL class had a SLLN tail member variable?
• getLast()
• addLast()
• removeLast()

head tail

List element List 7

<null>

Linked List Improvements: tail

• After adding a tail to SLL:
• addLast() and getLast() become O(1)
• removeLast() is not improved. Why?

• We need to know the SLLN before tail so we can reset tail

• Side effects
• We now have three cases to consider in method

implementations
• Think about add(int i, E o)

– empty list, head==tail, head!=tail

8

head tail0

null

head tail0

null

head tail0

null null

Linked List Improvements:
CircularlyLinkedLists

• Use next reference of last element to reference head
of list

• Replace head reference with tail reference
• Access head of list via tail.next()
• ALL operations on head are fast!
• addLast() is still fast
• Only modest additional complexity in implementation
• Can “cyclically reorder” list by changing tail node

• Question: What’s a circularly linked list of size 1? 9

DoublyLinkedLists

• Nodes keep reference/links in both directions
• DLL keeps head and tail references
• DoublyLinkedListNode instance variables:

• DLLN<E> next;
DLLN<E> prev;
E value;

10

202 Lists

headcount tail

3

Rhoda

value np

Rhonda

Rhory

Figure 9.7 A nonempty doubly linked list.

Figure 9.8 An empty doubly linked list.

Figure 9.9 Rhonda’s next reference duplicates Rhoda’s previous reference.

Figure 9.7,
Bailey pg. 202

DoublyLinkedLists

• Space overhead is proportional to number of elements
• Still O(n) like SLL and Vector

• ALL operations on tail (including removeLast) are fast!
• Additional complexity in each list operation

• Example: add(E d, int index)
• Four cases to consider now:

– empty list
– add to front
– add to tail
– add in middle

11

public class DoublyLinkedNode<E> {
protected E data;
protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

{
data = v;
nextElement = next;
if (nextElement != null)

nextElement.previousElement = this;
previousElement = previous;
if (previousElement != null)

previousElement.nextElement = this;
}

public void add(int i, E o) {
if (i == 0) {

addFirst(o);
} else if (i == size()) {

addLast(o);
} else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {

before = after;
after = after.next();
i--;

}
// before, after refer to items in slots i-1 and i
// continued on next slide

DoublyLinkedList Add Method

// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position.
// Use DLN constructor that takes parameters
// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size

// make after and before value point to new value
before.setNext(current);
after.setPrevious(current);
// Note: These lines aren’t needed---why?

}
}

DoublyLinkedList Add Method

Lab 4: Any Questions?
202 Lists

headcount tail

3

Rhoda

value np

Rhonda

Rhory

Figure 9.7 A nonempty doubly linked list.

Figure 9.8 An empty doubly linked list.

Figure 9.9 Rhonda’s next reference duplicates Rhoda’s previous reference.

Figure 9.7,
Bailey pg. 202

9.10 Laboratory: Lists with Dummy Nodes

Objective. To gain experience implementing -like objects.

Discussion. Anyone attempting to understand the workings of a doubly linked
list understands that it is potentially difficult to keep track of the references. One
of the problems with writing code associated with linked structures is that there
are frequently boundary cases. These are special cases that must be handled
carefully because the “common” path through the code makes an assumption
that does not hold in the special case.

Take, for example, the method for s:

The presence of the statement suggests that sometimes the code must reas-
sign the value of the reference. Indeed, if the list is empty, the first element
must give an initial non- value to . Keeping track of the various special
cases associated with a structure can be very time consuming and error-prone.

One way that the complexity of the code can be reduced is to introduce
dummy nodes. Usually, there is one dummy node associated with each external
reference associated with the structure. In the , for example,
we have two references (and); both will refer to a dedicated dummy
node:

Rhoda

Rhory

Rhonda

headcount tail

3

value p n

Bailey pg. 215

Lists and Recursion

• Let’s implement DLL’s int indexOf(E value)
recursively
Questions:
• What is the base case?
• How do we call indexOf(E value) on a smaller

version of the list?
• Nodes are recursive; List interface hides implementation details

• Prove by induction that recIndexOf() is O(n)
recursive calls in the worst case

