
CSCI 136
Data Structures &

Advanced Programming

Lecture 10
Spring 2018

Profs Bill & Jon

Administrative Details
• Lab 1
• Feedback on GitHub as a “Pull Request”

• In a separate `TA-feedback` branch

• `//$` and `/*$ */` comments are from
TAs/instructors.

• Comment on any of the PR lines if you have any
questions!

• Lab 4
• Optional partners again: please fill out form

whether working alone or in pairs!

Last Time
• Induction
• List: A general-purpose interface
• Implementing Lists with linked structures
• Singly Linked Lists

Today

• Implementing Lists with linked structures
• Singly Linked Lists – methods and implementation
• Circularly Linked Lists (more details in book)
• Doubly Linked Lists – Lab 4

4

Linked List Basics

• There are two key aspects of Lists
• Elements of the list

• Store data, point to the “next” element

• The list itself
• Includes head (sometimes tail) member variable

• Visualizing lists
head tail

List element List 5

<null>

Linked List Basics

• List nodes are recursive data structures
• Each �node� has:
• A data value
• A next variable that identifies the next element in

the list
• Can also have “previous” that identifies the

previous element (“doubly-linked” lists)

• What methods does the Node class need?
• next(), setNext(), value(), setValue()

6

• How would we implement SinglyLinkedListNode?
• SinglyLinkedListNode = SLLN in my notes
• SLLN = Node in the book (in Ch 9)

• How about SinglyLinkedList?
• SinglyLinkedList = SLL in my notes

SinglyLinkedLists

7

E value
SLLN next

SLLN head
int elementCount=3

Let’s Draw and Implement
• In SinglyLinkedListNode:

• public SLLN(E v, SLLN<E> next)
• SLLN<E> next(),
void setNext(SLLN<E> next)

• E value(), setValue(E value)

• In SinglyLinkedList:
• public SLL()
• public void addFirst(E value),
public E getFirst()

• public void addLast(E value),
public E getLast()

More SLL Methods

• How would we implement:
• get(int index), set(E d, int index)
• add(E d, int index),
remove(int index)
• removeLast() is just remove(size() - 1)
• removeFirst() is just remove(0)

• Left as an exercise:
• contains(E d)
• clear()

• Note: E is value type (generic)
9

//pre: index < size() – 1, size() > 0
public E get(int index) {

SLLN finger = head;
for (int i=0; i<index; i++){

finger = finger.next();
}
return finger.value();

}

//pre: index < size() – 1, size() > 0
public E set(E d, int index) {

SLLN finger = head;
for (int i=0; i<index; i++){

finger = finger.next();
}
E old = finger.value();
finger.setValue(d);
return old;

}

Get and Set

10

We should add
error-checking in

our functions.
Preconditions aren’t

enforced by the
Java language!

Add
public void add(E d, int index) {

if(index > size()) retur;
E old;

if (index==0) { addFirst(d); }

else if (index==size()) { addLast(d); }

else {
SLLN finger = head;
SLLN previous = null;
for (int i=0; i<index; i++) {

previous = finger;
finger = finger.next();

}
SLLN elem = new SLLN(d, finger);
previous.setNext(elem); // new “ith” item added after i-1
count++;

}
}

11

Remove
public E remove(int index) {

if(index >= size()) return null;

E old;

if (index==0) { // Special case: remove from head
old = head.value();
head = head.next();
count--;
return old;

}

else {
SLLN finger = head;
for (int i=0; i < index-1; i++) { //stop one before index

finger = finger.next();
}
old = finger.next.value();
finger.setNext(finger.next().next());
count--;
return old;

}
} 12

Linked Lists Summary

• Recursive data structures used for storing data
• More control over space use than Vectors
• Easy to add objects to front of list
• Components of SLL (SinglyLinkedList)

• SLLN<E> head, int elementCount
• Components of SLLN (Node):

• SLLN<E> next, SLLN<E> value

13

Vectors vs. SLL

• Compare performance of:
• size()
• addLast(), removeLast(), getLast()
• addFirst(), removeFirst(), getFirst()
• get(int index), set(E d, int index)
• remove(int index)
• contains(E d)
• remove(E d)

14

Vectors vs. SLL
Operation Vector SLL

size O(1) O(1)

addLast O(1) or O(n)(if resize) O(n)

removeLast O(1) O(n)

getLast O(1) O(n)

addFirst O(n) O(1)

removeFirst O(n) O(1)

getFirst O(1) O(1)

get(i) O(1) O(n)

set(i) O(1) O(n)

remove(i) O(n) O(n)

contains O(n) O(n)

remove(o) O(n) O(n) 15

SLL Summary

• SLLs provide methods for efficiently modifying front
of list
• Modifying tail/middle of list is not quite as efficient

• SLL runtimes are consistent
• No hidden costs like Vector.ensureCapacity()
• Avg and worst case are always the same

• Space usage
• No empty slots like vectors
• But keep extra reference for each value

• overhead proportial to list length
– (but this is constant and predictable)

16

DoublyLinkedLists

• Nodes keep reference/links in both directions
• DLL keeps head and tail references
• DoublyLinkedListNode instance variables:

• DLLN<E> next;
DLLN<E> prev;
E value;

19

202 Lists

headcount tail

3

Rhoda

value np

Rhonda

Rhory

Figure 9.7 A nonempty doubly linked list.

Figure 9.8 An empty doubly linked list.

Figure 9.9 Rhonda’s next reference duplicates Rhoda’s previous reference.

Figure 9.7,
Bailey pg. 202

DoublyLinkedLists

• Space overhead is proportional to number of elements
• Still O(n) like SLL and Vector

• ALL operations on tail (including removeLast) are fast!
• Additional complexity in each list operation

• Example: add(E d, int index)
• Four cases to consider now:

– empty list
– add to front
– add to tail
– add in middle

20

public class DoublyLinkedNode<E> {
protected E data;
protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

{
data = v;
nextElement = next;
if (nextElement != null)

nextElement.previousElement = this;
previousElement = previous;
if (previousElement != null)

previousElement.nextElement = this;
}

DoublyLinkedList

• We will implement a modified version of DLL
in Lab 4

• See LinkedList.java on course webpage

• What is the purpose of the lab?

Lab 4: Dummy Nodes
202 Lists

headcount tail

3

Rhoda

value np

Rhonda

Rhory

Figure 9.7 A nonempty doubly linked list.

Figure 9.8 An empty doubly linked list.

Figure 9.9 Rhonda’s next reference duplicates Rhoda’s previous reference.

Figure 9.7,
Bailey pg. 202

9.10 Laboratory: Lists with Dummy Nodes

Objective. To gain experience implementing -like objects.

Discussion. Anyone attempting to understand the workings of a doubly linked
list understands that it is potentially difficult to keep track of the references. One
of the problems with writing code associated with linked structures is that there
are frequently boundary cases. These are special cases that must be handled
carefully because the “common” path through the code makes an assumption
that does not hold in the special case.

Take, for example, the method for s:

The presence of the statement suggests that sometimes the code must reas-
sign the value of the reference. Indeed, if the list is empty, the first element
must give an initial non- value to . Keeping track of the various special
cases associated with a structure can be very time consuming and error-prone.

One way that the complexity of the code can be reduced is to introduce
dummy nodes. Usually, there is one dummy node associated with each external
reference associated with the structure. In the , for example,
we have two references (and); both will refer to a dedicated dummy
node:

Rhoda

Rhory

Rhonda

headcount tail

3

value p n

Bailey pg. 215

• Lab Question: What are the advantages of adding dummy nodes?

