CSCI 136 Data Structures & Advanced Programming

> Lecture 9 Spring 2018 Profs Bill & Jon

### **Administrative Details**

- Lab I
  - I apologize for not having it returned yet
  - Feedback will show up on GitHub as a "Pull Request"
  - PRs give you the option to view comments lineby-line, and respond to comments
  - New workflow this semester, so it is taking time to get the kinks worked out. It should be faster turnaround than printouts once it is working.

### Last Time

- Revisited Vector Growth
  - Additive: O(n<sup>2</sup>)
  - Multiplicative: O(n)
- Recursion
  - Base case
  - Recursive "leap of faith"
- Lab 3
  - Subset Sum
    - Helper method!
    - Big-O?

# Today

- Induction
  - An important proof strategy
  - Closely tied to recursion
- List: A general-purpose interface
- Implementing Lists with linked structures
  - Singly Linked Lists
  - Circularly Linked Lists
  - Doubly Linked Lists

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Reflects the structure of the natural numbers
- Use to simultaneously prove an infinite number of theorems!

• Example: Prove that for every  $n \ge 0$ 

$$P_n: \sum_{i=0}^n i = 0 + 1 + \dots + n = \frac{n(n+1)}{2}$$

- Proof by induction mirrors recursion:
  - Base case:
    - $P_n$  is true for n = 0
  - Inductive hypothesis:
    - If  $P_n$  is true for some  $n \ge 0$ , then  $P_{n+1}$  is true.
      - (Using a smaller version of the problem, we solve a larger version)

$$P_n: \sum_{i=0}^n i = 0 + 1 + \dots + n = \frac{n(n+1)}{2}$$

- Prove the base case:  $P_n$  is true for n = 0
  - Just check it! Substitute 0 into the equation.

$$0 = 0(1)/2$$

 Assume the inductive hypothesis: P<sub>n</sub> is true for some n≥0

• Then use assumption to show that  $P_{n+1}$  is true. Write out  $P_{n+1}$  and target equality

$$P_{n+1}: 0 + 1 + \dots + n + (n+1) = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2}$$
This is  $P_n!$ 

$$\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)+2(n+1)}{2} = \frac{n^2+3n+2}{2} = \frac{(n+1)(n+2)}{2}$$

First equality holds by assumed truth of P<sub>n</sub>!

## What about Recursion?

- What does induction have to do with recursion?
  - Same form!
    - Base case
    - Inductive case that uses simpler form of problem
- We can prove things about recursive functions using induction.
- Example: factorial
  - Prove that fact(n) requires n multiplications

```
public static int fact(n) {
    if (n==0) return 1;
    return n * fact(n-1);
}
```

## fact(n) requires n multiplications

- Prove that fact(n) requires n multiplications
  - Base case: n = 0 returns I
    - 0 multiplications
  - Inductive Hypothesis: Assume true for all k<n, so fact(k) requires k multiplications.
  - Prove, from simpler cases, that the *n*<sup>th</sup> case holds
    - fact(n) performs 1 multiplication (n\*fact(n-1)).
    - We know fact(n-1) requires n-1 multiplications (by our I.H.)
    - 1+n-1 = n
      - therefore fact(n) requires n multiplications.

• Prove: 
$$\sum_{i=0}^{n} 2^{i} = 2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1$$

(Practice at home)

• Prove: 
$$0^3 + 1^3 + ... + n^3 = (0 + 1 + ... + n)^2$$

Prove: fib(n) makes at least fib(n)
 calls to fib()

## Counting fib() method calls

- Prove that fib(n) makes at least fib(n) calls to fib()
  - Base cases: n = 0: | call; n = 1; | call
  - Inductive Hypothesis: Assume that for some n≥2, fib(n-1) makes at least fib(n-1) calls to fib() and fib(n-2) makes at least fib(n-2) calls to fib().
  - Claim: Then fib(n) makes at least fib(n) calls to fib()
    - I initial call: fib(n)
    - By induction: At least fib(n-1) calls for fib(n-1)
    - And as least fib(n-2) calls for fib(n-2)
    - Total: I + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls
  - Note: Need two base cases!

## The List Interface

```
interface List {
    size()
    isEmpty()
    contains(e)
    get(i)
    set(i, e)
    add(i, e)
    remove(i)
    addFirst(e)
    getLast()
```

}

- It's an interface...therefore it provides no implementation
- Can be used to describe many different types of lists
- Vector implements List
- Other implementations are possible...

### Pros and Cons of Vectors

#### <u>Pros</u>

- Good general purpose list
- Dynamically Resizeable
- Fast access to elements
  - vec.get(387425) finds item 387425 in the same number of operations regardless of vec's size

#### <u>Cons</u>

- Slow updates to front of list (why?)
- Hard to predict time for add (depends on internal array size)
- Potentially wasted space

What if we didn't have to copy the array each time we grew vec?

## List Implementations

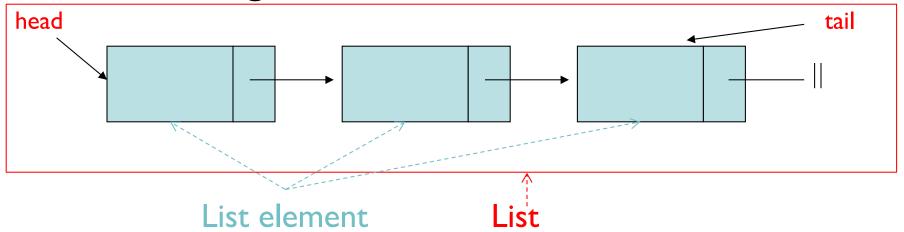
- General concept for storing/organizing data
- Vector implements the List interface
- We'll now explore other List implementations
  - SinglyLinkedList
  - CircularlyLinkedList
  - DoublyLinkedList

## Linked List Basics

- There are two key aspects of Lists
  - Elements of the list
    - Store data, point to the "next" element
  - The list itself
    - Includes head (sometimes tail) member variable

16

• Visualizing lists



## Linked List Basics

- List nodes are recursive data structures
- Each "node" has:
  - A data value
  - A next variable that identifies the next element in the list
  - Can also have "previous" that identifies the previous element ("doubly-linked" lists)
- What methods does the Node class need?

# SinglyLinkedLists

- How would we implement SinglyLinkedListNode?
  - SinglyLinkedListNode = SLLN in my notes
  - SLLN = Node in the book (in Ch 9)
- How about SinglyLinkedList?
  - SinglyLinkedList = SLL in my notes
- What would the following look like?
  - addFirst(E d)
  - getFirst()?
  - addLast(E d)? (more interesting)
  - getLast()?



next

value

head —

elementCount=3