
CSCI 136
Data Structures &

Advanced Programming

Lecture 9
Spring 2018

Profs Bill & Jon

Administrative Details

• Lab 1
• I apologize for not having it returned yet
• Feedback will show up on GitHub as a “Pull

Request”
• PRs give you the option to view comments line-

by-line, and respond to comments
• New workflow this semester, so it is taking time

to get the kinks worked out. It should be faster
turnaround than printouts once it is working.

Last Time
• Revisited Vector Growth
• Additive: O(n2)
• Multiplicative: O(n)

• Recursion
• Base case

• Recursive “leap of faith”

• Lab 3
• Subset Sum

• Helper method!
• Big-O?

Today

• Induction
• An important proof strategy
• Closely tied to recursion

• List: A general-purpose interface
• Implementing Lists with linked structures
• Singly Linked Lists
• Circularly Linked Lists
• Doubly Linked Lists

4

Mathematical Induction

• The mathematical cousin of recursion is
induction

• Induction is a proof technique
• Reflects the structure of the natural

numbers
• Use to simultaneously prove an infinite

number of theorems!

Mathematical Induction
• Example: Prove that for every n ≥ 0

!" ∶ ∑%&'" (= 0 + 1 + …+ - =
"("/0)

2

• Proof by induction mirrors recursion:
• Base case:

• Pn is true for n = 0

• Inductive hypothesis:
• If Pn is true for some n≥0, then Pn+1 is true.

– (Using a smaller version of the problem, we solve a larger
version)

Mathematical Induction

!" ∶ ∑%&'" (= 0 + 1 + …+ - =
"("/0)

2
• Prove the base case: Pn is true for n = 0

• Just check it! Substitute 0 into the equation.
0 = 0(1)/2

• Assume the inductive hypothesis: Pn is true for
some n≥0

• Then use assumption to show that Pn+1 is true.

!"/0: 0 + 1 + …+ - + - + 1 = - + 1 - + 1 + 1
2 = (- + 1)(- + 2)

2

" "/0
2 + - + 1 = " "/0 / 2("/0)

2 =
"2/6"/2

2 = ("/0)("/2)
2

• First equality holds by assumed truth of Pn!

Write out Pn+1 and target equality

This is Pn!

What about Recursion?
• What does induction have to do with recursion?

• Same form!
• Base case
• Inductive case that uses simpler form of problem

• We can prove things about recursive functions using
induction.

• Example: factorial
• Prove that fact(n) requires n multiplications

public static int fact(n) {
if (n==0) return 1;
return n * fact(n-1);

}

fact(n) requires n multiplications

• Prove that fact(n) requires n multiplications
• Base case: n = 0 returns 1

• 0 multiplications

• Inductive Hypothesis: Assume true for all k<n, so fact(k)
requires k multiplications.

• Prove, from simpler cases, that the nth case holds
• fact(n) performs 1 multiplication (n*fact(n-1)).
• We know fact(n-1) requires n-1 multiplications (by our I.H.)
• 1+n-1 = n

– therefore fact(n) requires n multiplications.

Mathematical Induction

• Prove:

(Practice at home)
• Prove:

• Prove: fib(n) makes at least fib(n)
calls to fib()

€

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 −1
i= 0

n

∑

€

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

Counting fib() method calls
• Prove that fib(n) makes at least fib(n) calls to fib()

• Base cases: n = 0: 1 call; n = 1; 1 call
• Inductive Hypothesis: Assume that for some n≥2, fib(n-1) makes at

least fib(n-1) calls to fib() and fib(n-2) makes at least
fib(n-2) calls to fib().

• Claim: Then fib(n) makes at least fib(n) calls to fib()
– 1 initial call: fib(n)

– By induction: At least fib(n-1) calls for fib(n-1)
– And as least fib(n-2) calls for fib(n-2)

– Total: 1 + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls

• Note: Need two base cases!

The List Interface
interface List {

size()
isEmpty()
contains(e)
get(i)
set(i, e)
add(i, e)
remove(i)
addFirst(e)
getLast()
.
.
.

}

• It�s an interface…therefore it
provides no implementation

• Can be used to describe many
different types of lists

• Vector implements List

• Other implementations are
possible…

13

Pros and Cons of Vectors

Pros
• Good general purpose list
• Dynamically Resizeable
• Fast access to elements

• vec.get(387425) finds
item 387425 in the same
number of operations
regardless of vec’s size

Cons
• Slow updates to front

of list (why?)
• Hard to predict time

for add (depends on
internal array size)

• Potentially wasted space

What if we didn’t have to copy the array each time we grew vec?

14

List Implementations

• General concept for storing/organizing data
• Vector implements the List interface
• We’ll now explore other List implementations

• SinglyLinkedList
• CircularlyLinkedList
• DoublyLinkedList

15

Linked List Basics

• There are two key aspects of Lists
• Elements of the list

• Store data, point to the “next” element

• The list itself
• Includes head (sometimes tail) member variable

• Visualizing lists
head tail

List element List 16

Linked List Basics

• List nodes are recursive data structures
• Each �node� has:
• A data value
• A next variable that identifies the next element in

the list
• Can also have “previous” that identifies the

previous element (“doubly-linked” lists)

• What methods does the Node class need?

17

• How would we implement SinglyLinkedListNode?
• SinglyLinkedListNode = SLLN in my notes
• SLLN = Node in the book (in Ch 9)

• How about SinglyLinkedList?
• SinglyLinkedList = SLL in my notes

• What would the following look like?
• addFirst(E d)
• getFirst()?
• addLast(E d)? (more interesting)
• getLast()?

SinglyLinkedLists

value
next

18

head
elementCount=3

