Prove that for every $n \geq 0$:

$$
\sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

Base case(s):

Inductive Hypothesis: Assume ...

Inductive Step: Then show...

Prove that for every $n \geq 0$:

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

Base case(s):

Inductive Hypothesis: Assume ...

Inductive Step: Then show...

Practice at home: Prove $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$

