[TAP:DSQEV] Big-O

```
for (int i=0; i < arr.length; i++) {
    for (int j=0; j < arr.length; j++){
    for (int k=0; k < arr.length; k++)
        System.out.println("digits: "
                                    +arr[i]+arr[j]+arr[k]);
        for (int k=0; k < arr.length; k++)
        System.out.println("digits: "+arr[k]);
```

 \}
 \}
 - What is the time complexity of the code above?
A. $O(n)$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $O\left(n^{3}\right)$
D. $\mathrm{O}\left(\mathrm{n}^{4}\right)$
E. Whatever

Asymptotic Analysis (Big-O Analysis)

- "How scalable is the algorithm?" as impur sive is
- Commonly split into the following classes:
- O(1) : "constant" $e^{\prime \prime}$ m loop thunct ere input *
" λ^{*} • O(log $\left.n\right)$: "logarithmic" or "log n "

- $O(n \log n):$ " n log $n "$
- O(n²) : "quadratic"
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$: "cubic" " 3 nat

- O(c) : "exponential"

Administrative Details

- Lab 3
- This is a partner lab; you get to work in groups of 2.
- Please complete PRE-LAB before lab
- Submit to the google form, please!

Agenda

○ Recursion

Factorial
Andere

$$
n_{n}^{\prime}=n \cdot n-1 \cdot n-2 \cdot \ldots \cdot 1
$$

phanion

$$
\begin{aligned}
& n!=n \cdot(n-1)! \\
& 0!=1
\end{aligned}
$$

fret (int n)

$$
\text { if }(n==0) \text {) hare caste }
$$

retaro 1;

$$
\text { Letum } n: \underline{f r c t(n-1)} \text {; }
$$

$$
\text { fact }(n)\{
$$

recursine cese Letans n. fret $(n+1)$;
fant (0) ;
retun 1;)

Recursion

- In recursion, we always use the same basic approach/structure
- base case ex) n=0
- recursive case en $n>0$

Fibonacci Numbers

$$
\begin{aligned}
& 0,1,2,5 \\
& 1,1,2,3,8 \\
& F_{0}=1 \\
& F_{1}=1 \\
& \text { for } n>1 \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

fib()
/1prei $n>=0$
1/post: uth Fibaracei, $\#$ is returned

$$
\begin{aligned}
& \text { public stertic int fib }(\text { int } n \text {) } \\
& \begin{array}{l}
\text { assere } n>=0 \text {; } \\
\text { l/base care }
\end{array} \\
& \begin{array}{l}
\left.\begin{array}{l}
\text { if }(n==0) \\
\text { Leturen 1; } \\
\text { if }(n==1) \\
\text { Leturn 1; }
\end{array}\right] \Longrightarrow \text { if }((n=\infty) \|(n==1)) \\
\text { return 1; }
\end{array} \\
& \text { //remrsive } \\
& \text { return } f_{i b}(n-1)+f i b(n-2) \text {; }
\end{aligned}
$$

3
had
IPte: nums! = mull
contains()
publice static boolean contains (intt) nums, int x)

$$
\text { if (nums.lengter }=0 \text {) }
$$

return false;

$$
\text { if }(\text { mums }[0]==x)
$$

retum true;
intto remaining $=$ nen int [nums, length -1];
for (int $i=0 ; i$ <renaining. leudth $; i t t$)
Lemaining $[i)=$ nums $[i+1]$;
return Contains (remaining, x);
3
contains()
poab'ic statie boolean contaims (intts numes, ont x) $\{$
retern contaims Helpen (nums, $x, 0$);
3
private static beslean Containstelper (intC) nums, int x, int (curIdx)

$$
\text { if }(\text { curIdy }>=\text { num }<\text {, length })
$$

retumn false;
return nums $[\operatorname{cur}] d x]==\chi \quad \|$
contains Melper (nums, x, curId $x+1$);
3
canMakeSum()

Recursion Tradeoffs

- Advantages
- Code is usually cleaner
- Some problems do not have obvious nonrecursive solutions
- Disadvantages
- Overhead of recursive calls
- Can use lots of memory (need to store state for each recursive call until base case is reached)

assert

- Pre- and post-condition comments are useful as a programmer, but it not enforced.
- assert throws an error if the condition is not met!
- assert syntax
- assert boolean_expression;
- assert boolean_expression: String expression;
rum java with "-ea"
ea) java -en Recursion

