
CSCI 136
Data Structures &

Advanced Programming

Lecture 8
Spring 2018
Bill and Jon

Administrative Details

• Lab 3 Today
• Declare your partner (or independence) by 10am

– One repository where both people have access
– Beware of merge conflicts!

• Questions about warm-up problems?
– We’ll go over at start of lab, but does anyone feel like they have a

good solution?

Last Time

• Measuring Growth
• Big-O

• We care about trends
• Goal: determine how performance scales with input

size.
• Best, worst, and average cases

Today

• Applying O() to Compute Complexity
• Finish Vector growing examples

• Recursion
• Mathematical Induction

Vector Operations : Worst-Case
Let n = Vector size (not capacity!):
• O(1) operations (cost is same regardless of size):

• size(), capacity(), isEmpty(), get(i),
set(i), firstElement(), lastElement()

• O(n) operations (cost grows proportionally to size):
• indexOf(), contains(), remove(elt),
remove(i)

• What about add methods?
• If Vector doesn’t need to grow

• add(elt) is O(1) but add(elt, i) is O(n)

• Otherwise, depends on ensureCapacity() time
• Time to copy array: O(n)

5

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d.
How long does it take to add n items to an empty Vector?

• The array will be copied each time its capacity needs to
exceed a multiple of d
• At sizes 0, d, 2d, … , n/d.

• Copying an array of size kd takes ckd steps for some
constant c, giving a total of

6

= !" ($%)(
$
% + 1)/2 = +(,-)= !" ∑012$/% 34

012

$/%
!3"

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?

• The array will be copied each time its capacity needs to
exceed a power of 2
• At sizes 0, 1, 2, 4, 8 …, n/2

• The total number of elements are copied when n
elements are added is:
• 1 + 2 + 4 + ... + n/2

• Very cool! (So cool that we’ll prove it later)
7

= n-1 = O(n)

Common Complexities
For n = measure of problem size:
• O(1): constant time and space
• O(log n): divide and conquer algorithms, binary search
• O(n): linear scan (e.g., list lookup)
• O(n log n): divide and conquer sorting algorithms
• O(n2): matrix addition, selection sort
• O(n3): matrix multiplication
• O(nk): cell phone switching algorithms
• O(2n): subset sum, graph 3-coloring, satisfiability, ...
• O(n!): traveling salesman problem (in fact O(n22n))

8

Recursion

• General problem
solving strategy
• Break problem into

sub-problems of same
type

• Solve sub-problems
• Combine sub-problem

solutions into solution
for original problem
• Recursive leap of faith!

Recursion

• Many algorithms are recursive
• Can be easier to understand (and prove

correctness/state efficiency of) than iterative
versions

• They feel elegant

• Today we will review recursion and then talk
about techniques for reasoning about
recursive algorithms

Think Recursively

• In recursion, we always use the same basic
approach

• What’s our base case? [Sometimes “cases”]
• n=0? list.isEmpty()?

• What�s the recursive relationship?
• How can we use the solution to a smaller version

of the problem to answer the question?

Factorial

• n!
• How can we implement this?
• We could use a for loop…

• But we could also write it recursively
• n! = n · (n-1)!
• 0! = 1

= n · (n-1) · (n-2) · … · 1

fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Factorial

Fact.java
public class Fact{

// Pre: n >= 0
public static int fact(int n) {

// base case
if (n==0) {

return 1;
}
// recursive leap of faith
else {

return n*fact(n-1);
}

}

public static void main(String args[]) {
System.out.println(fact(Integer.valueOf(args[0]).intValue()));

}

}

Fibonacci Numbers

• 1, 1, 2, 3, 5, 8, 13, ...
• Definition
• F0 = 1, F1 = 1
• For n > 1, Fn = Fn-1 + Fn-2

• Inherently recursive!
• It appears almost everywhere
• Growth: Populations, plant features
• Architecture
• Data Structures!

Fib.java
public class Fib{

// pre: n is non-negative
public static int fib(int n) {

// base case
if (n==0 || n == 1) {

return 1;
}
// recursive leap of faith
else {

return fib(n – 1) + fib(n – 2);
}

}

public static void main(String args[]) {
System.out.println(fib(Integer.valueOf(args[0]).intValue()));

}

}

Recursion Tradeoffs

• Advantages
• Often easier to construct recursive solution
• Code is usually cleaner (so elegant!)
• Some problems do not have obvious non-

recursive solutions

• Disadvantages
• Overhead of recursive calls
• Can use lots of memory (need to store state for

each recursive call until base case is reached)
• E.g. recursive fibonacci method

Alternate contains() for Vector
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {

if (from > to) // Base case: empty range
return false;

else
return elt.equals(elementData[from]) ||

contains(elt, from+1, to);
}

public boolean contains(E elt) {
return contains(elt, 0, size()-1);

}

• What’s the time complexity of contains?
• O(to – from + 1) = O(n) (n is the portion of the array searched)
• Why?

• Bootstrapping argument! True for: to – from = 0, to – from = 1, …

• Let’s formalize this bootstrapping idea....

