
[TAP:PCOQD] Vector vs Array
• Which of the following are correct?

A. Vectors can “grow”

B. Arrays can “grow”

C. They both can’t “grow”

D. They both can “grow”

E. Whatever
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Administrative Details

• Lab 2

• Only 8 more to go!

• Lab 3

• This is a partner lab; you get to work in 

groups of 2.

• Please complete PRE-LAB before lab



Agenda

• Measuring Growth (Big-O)

• Recursion
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Measuring Computational Cost

• How can we measure the amount of time 

needed to run a program?

4



Measuring Computational Cost

Consider these two code fragments…

1. Finding an element
for (int i=0; i < arr.length; i++)

if (arr[i] == x) return true;

return false;

2. Finding a pair of duplicate items
for (int i=0; i < arr.length; i++)

for (int j=0; j < arr.length; j++)

if( i !=j && arr[i] == arr[j]) return true;

return false;
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Asymptotic Analysis (Big-O Analysis)

• A function f(n) is O(g(n)) if and only if there 

exist positive constants c and n0 such that 

|f(n)| ≤ c· g(n) for all n  n0

• g is “grows at least as fast as” f for large n

• Up to a multiplicative constant c

7



Determining “Best” Upper 

Bounds
• We typically want the smallest upper bound when 

we estimate running time

• Example: Let f(n) = 3n2

• f(n) is O(n2)

• f(n) is O(n3)

• f(n) is O(2n)

• f(n) is NOT O(n) (!!)

• “Best” upper bound is O(n2)
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Function Growth & Big-O

• Rule of thumb: find the most significant or 

dominant term & ignore multiplicative 

constant

• a0n
k + a1n

k-1 + a2n
k-2 + … ak is roughly nk

9



Asymptotic Analysis (Big-O Analysis)

• “How scalable is the algorithm?”

• Commonly split into the following classes:

• O(1) : “constant”

• O(log n) : “logarithmic” or “log n”

• O(n) : “linear”

• O(n log n) : “n log n”

• O(nc) : “polynomial”

• O(n2) : “quadratic”

• O(n3) : “cubic”

• O(cn) : “exponential” 10



Agenda

• Measuring Growth (Big-O)

• Recursion
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Recursion

• General problem solving strategy

• Break problem into smaller pieces

• Sub-problems may look a lot like original -

may in fact by smaller versions of same 

problem

• Examples
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Recursion

• Many algorithms are recursive

• Can be easier to understand (and prove 

correctness & state efficiency of) than iterative 

versions



Factorial


