[TAP:PCOQD] Vector vs Array

- Which of the following are correct?
A. Vectors can "grow" $=$ qued $=$ qut biggn" ineraverpaity
B. Arrays can "grow"
C. They both can't "grow"
D. They both can "grow"
E. Whatever

Administrative Details

- Lab 2

- Only 8 more to go!
- Lab 3

- This is a partner lab; you get to work in groups of 2.
- Please complete PRE-LAB before lab

Agenda

\bigcirc Measuring Growth (Big-O)

- Recursion

Measuring Computational Cost c.fficionct timex

- How can we measure the amount of time needed to run a program?

- compute en of Seconds
- difference in hardware
- input
- Count \# of operations
- express in terns of input size
(\Rightarrow "n" in the expression)

Measuring Computational Cost

Consider these two code fragments...

1. Finding an element
```
for (int i=0; i < arr.length; i++)
    if (arr[i] == x) return true; }~
return false;
=O(n)
```

2. Finding a pair of duplicate items
```
for (int i=0; i < arr.length; i++)
    for (int j=0; j < arr.length; j++) =O(n')
    if( i !=j && arr[i] == arr[j]) return true;
return false;
```


Asymptotic Analysis (Big-O Analysis)

- A function $f(n)$ is $O(g(n))$ if and only if there exist positive constants c and n_{0} such that

$$
|f(n)| \leq \underline{c} \cdot g(n) \text { for all } n \geq \underline{n}_{0}
$$

- g is "grows at least as fast as" f for large \mathbf{n}
- Up to a multiplicative constant c

Determining "Best" Upper Bounds

- We typically want the smallest upper bound when we estimate running time
- Example: Let $f(n)=3 n^{2}$
- $f(n)$ is $O\left(n^{2}\right) \quad 3 n^{2} \leq c \cdot n^{2}$
- $f(n)$ is $O\left(n^{3}\right)^{v} \quad 3 n^{2} \leq n^{3}$
- $f(n)$ is $O\left(2^{n}\right) \vee$
- $f(n)$ is NOTO(n) (!!) $3 n^{2} \leq n$
- "Best" upper bound is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\theta\left(n^{2}\right)$

Function Growth \& Big-O

- Rule of thumb: find the most significant or dominant term \& ignore multiplicative constant
$f(x)=a_{0} n^{k}+a_{1} n^{k-1}+a_{2} n^{k-2+} a_{k}$ is roughly n^{k}
$O\left(n^{k}\right)$

Asymptotic Analysis (Big-O Analysis)

- "How scalable is the algorithm?" as input sive
- Commonly split into the following classes:
- O(1) : "constant" e"m lop thrap - re input"
- O(log n) : "logarithmic" or "log n"
- O(n) " "linear" ", "

- $\mathrm{O}\left(\mathrm{n}^{3}\right)$: "cubic" "3 witus
- O(cn) : "exponential"

Agenda

- Measuring Growth (Big-O)
\bigcirc Recursion

Recursion

- General problem solving strategy
- Break problem into smaller pieces
- Sub-problems may look a lot like original may in fact by smaller versions of same problem
- Examples
fruts

Recursion

- Many algorithms are recursive
- Can be easier to understand (and prove correctness \& state efficiency of) than iterative versions
loops

Factorial
ituatome

$$
n!=n \cdot n-1 \cdot n-2 \cdots \cdots 1
$$

neursion

$$
\begin{aligned}
& n!=n \cdot(n-1)! \\
& 0!=1
\end{aligned}
$$

