[TAP:PCOQD] Vector vs Array

- Which of the following are correct?
 - A. Vectors can "grow" = extend = get bigger = inerense upacity
 - B. Arrays can "grow"
 - C. They both can't "grow"
 - D. They both can "grow"
 - E. Whatever

Administrative Details

- - Lab 3

• Only 8 more to go! ab 3

- This is a partner lab; you get to work in groups of 2.
- Please complete PRE-LAB before lab

Agenda

- Measuring Growth (Big-O)
 - Recursion

Measuring Computational Cost How can we measure the amount of time needed to run a program?

Measuring Computational Cost

Consider these two code fragments...

1. Finding an element

for (int i=0; i < arr.length; i++)</pre>

if (arr[i] == x) return true; $\simeq ^{\checkmark}$ return false; $= \bigcirc (\flat)$

2. Finding a pair of duplicate items
for (int i=0; i < arr.length; i++)
for (int j=0; j < arr.length; j++) = 0(n^2)
if(i !=j && arr[i] == arr[j]) return true;
return false;</pre>

Asymptotic Analysis (Big-O Analysis)

- A function f(n) is O(g(n)) if and only if there exist positive constants c and n₀ such that
 |f(n)| ≤ <u>c</u>: g(n) for all n ≥ n₀
- g is "grows at least as fast as" f for large n
 - Up to a multiplicative constant c

Determining "Best" Upper Bounds

- We typically want the *smallest* upper bound when we estimate running time
- Example: Let $f(n) = 3n^2$
 - f(n) is $O(n^2) \checkmark 3m^2 \leq C \cdot n^2$
 - f(n) is $O(n^3) \checkmark 3\mu^2 \leq \mu^3$
 - f(n) is O(2ⁿ)
 - f(n) is NOT O(n) (!!) ろって そこへ
 - "Best" upper bound is O(n²)

 $\theta(n^2)$

Function Growth & Big-O

 Rule of thumb: find the most significant or dominant term & ignore multiplicative constant

 $\begin{array}{c} \text{(h)} \bullet \mathbf{a}_0 \mathbf{n}^k + \mathbf{a}_1 \mathbf{n}^{k-1} + \mathbf{a}_2 \mathbf{n}^{k-2} + \cdots + \mathbf{a}_k \\ \text{(h)} \end{array} \text{ is roughly } \mathbf{n}^k \\ \text{(h)} \end{array}$

Asymptotic Analysis (Big-O Analysis)

- "How scalable is the algorithm?" as imput size f
- Commonly split into the following classes:
 - O(1): "constant" = " hop though de input "
- $O(\log n)$: "logarithmic" or "log n" O(n) : "linear" · $\int_{a} \int_{a} \int_{a$ **Big-O Complexity** • O(n^c) : "polynomial" 500 • O(n²) : "quadratic" 200 • O(n³) : "cubic" ` ' " 100 10 20 Flement O(cⁿ) : "exponential"

Agenda

Measuring Growth (Big-O)

• Recursion

Recursion

- General problem solving strategy
 - Break problem into smaller pieces
 - Sub-problems may look a lot like original may in fact by smaller versions of same problem
- Examples

met

Recursion

• Many algorithms are recursive

loops

 Can be easier to understand (and prove correctness & state efficiency of) than iterative versions

Factorial

Neursine $N := N \cdot (n-1) :$ 0 := 1