
CSCI 136
Data Structures &

Advanced Programming

Lecture 7
Spring 2018
Bill and Jon

Administrative Details

• Lab 3 Wednesday!
• You may work with a partner

• Fill out “Lab 3 Partners” Google form either way!

• Come to lab with a plan! (no design doc needed)
• Try to answer warmup questions before lab

• Subset Sum is challenging but important

2

Last Time

• Where did I go?
• What did I miss?
• Tell me about Lab 2!
• Should we expect from here?

3

Today

• Measuring Growth
• Big-O

• Introduction to Recursion

Measuring Computational Cost

Consider these two code fragments…
for (int i=0; i < arr.length; i++)

if (arr[i] == x) return “Found it!”;

…and…

for (int i=0; i < arr.length; i++)
for (int j=0; j < arr.length; j++)
if(i !=j && arr[i] == arr[j]) return ”Match!”;

(What do they do?)
How long does it take to execute each block? 5

Measuring Computational Cost

• How can we measure the amount of work
needed by a computation?
• Get out a stopwatch (aka wall-clock time)?

• Problems?
– Different machines have different clocks
– Too much other stuff happening (network, OS, etc)
– Not consistent. Need lots of tests to predict

future behavior

6

Measuring Computational Cost

• A better way: Counting computations
• Count all computational steps?
• Count how many “expensive” operations were

performed?
• Count number of times “x” happens?

• For a specific event or action “x”
• i.e., How many times a certain variable changes

• Question: How accurate do we need to be?
• 64 vs 65? 100 vs 105? Does it really matter??

7

An Example
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++)

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly?
• “if” makes it hard

• Idea: Overcount: assume “if” block always runs
• Overcounting gives upper bound on run time
• Can also undercount for lower bound

Measuring Computational Cost

• Rather than keeping exact counts, we want to
know the order of magnitude of occurrences
• 60 vs 600 vs 6000, not 65 vs 68
• n, not 4(n-1) + 4

• We want to make comparisons without
looking at details and without running tests

• Avoid using specific numbers or values
• Look for overall trends

9

Measuring Computational Cost

• How does work scale with problem size?
• E.g.: If I double the size of the problem instance, how

much longer will it take to solve:
• Find maximum: n – 1 à (2n) – 1 (twice as long)
• Bubble sort: n(n-1)/2 à 2n(2n – 1)/2 (4 times as long)
• Enumerate all subsets: 2n-1 à 2(2n)-1 (2n times as long!!!)
• Etc.

• We will also measure amount of space used by an
algorithm using the same ideas….

10

Function Growth

Consider the following functions, for x >= 1
• f(x) = 1
• g(x) = log2(x) // Reminder: if x=2n, log2(x) = n
• h(x) = x
• m(x) = x log2(x)
• n(x) = x2

• p(x) = x3

• r(x) = 2x

11

Function Growth & Big-O

• Rule of thumb: ignore multiplicative constants
• Examples:
• Treat n and n/2 as same order of magnitude
• n2/1000, 2n2, and 1000n2 are “pretty much” just n2

• The key is to find the most significant or
dominant term

• Ex: limx→∞ (3x4 -10x3 -1)/x4 = 3 (Why?)
• So 3x4 -10x3 -1 grows “like” x4

12

Asymptotic Bounds (Big-O Analysis)

• A function f(n) is O(g(n)) if and only if there
exist positive constants c and n0 such that

|f(n)| ≤ c· g(n) for all n ³ n0

• g is “at least as big as” f for large n
• Up to a multaplicative constant c!

• Example:
• f(n) = n2/2 is O(n2)
• f(n) = 1000n3 is O(n3)
• f(n) = n/2 is O(n)

13

Function Growth

1

log2(x)

x

x log2(x)

x2

2x

2 4 6 8 10

-20

20

40

60

Determining “Best” Upper Bounds

• We typically want the smallest upper bound when we
estimate running time

• Example: Let f(n) = 3n2

• f(n) is O(n2)
• f(n) is O(n3)
• f(n) is O(2n)
• f(n) is NOT O(n) (!!)

• “Best” upper bound is O(n2)
• We care about c and n0 in practice, but focus on size

of g when designing algorithms and data structures

15

Input-dependent Running Times
• Algorithms may have different running times for

different input values
• Best case (typically not useful)

• Sort already sorted array
• Find item in first place that we look

• Worst case (generally useful, sometimes misleading)
• Don’t find item in list O(n)
• Reverse order sort O(n2)

• Average case (useful, but often hard to compute)
• Linear search O(n)
• QuickSort random array O(n log n) ß We’ll sort soon

16

Vector Operations : Worst-Case
For n = Vector size (not capacity!):
• O(1):

• size(), capacity(), isEmpty(), get(i),
set(i), firstElement(), lastElement()

• O(n):
• indexOf(), contains(), remove(elt),
remove(i)

• What about add methods?
• If Vector doesn’t need to grow

• add(elt) is O(1) but add(elt, i) is O(n)

• Otherwise, depends on ensureCapacity() time
• Time to copy array: O(n)

17

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d.
How long does it take to add n items to an empty Vector?

• The array will be copied each time its capacity needs to
exceed a multiple of d
• At sizes 0, d, 2d, … , n/d.

• Copying an array of size kd takes ckd steps for some
constant c, giving a total of

∑"#$%/' ()* = (* ∑"#$%/') = (* (%')(
%
' + 1)/2 = 1(23)

18

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?
• The array will be copied each time its capacity needs to

exceed a power of 2
• At sizes 0, 1, 2, 4, 8 …, n/2

• The total number of elements are copied when n
elements are added is:
• 1 + 2 + 4 + ... + n/2 = n-1 = O(n)

• Very cool!
19

