
Lab 7
Due 15 April

CSCI 136: Spring 2018
Handout - Two Towers

8 April

The Two Towers (Not a partner lab)

1 Prelab
Write an iterator that iterates over the characters of a String. Repeated calls to the iterator’s next() method will
return the first character of the string, then the second character, and so on.

More specifically, you are to complete the design of the class CharacterIterator and implement the follow-
ing constructor and methods (you may add helper methods and class variables as you see fit):

public class CharacterIterator extends AbstractIterator<Character> {
public CharacterIterator(String str) { ... }
public Character next() { ... }
public boolean hasNext() { ... }
public void reset() { ... }
public Character get() { ... }

}

The Character class is the wrapper class for char values. You use it much like we use Integer for int
values. The Java compiler will automatically convert char values to Character objects when necessary via a
technique called “autoboxing.”

Re-read Chapter 8 in your textbook to review Iterators. I highly recommend you complete your Prelab
solution before lab on Wednesday if possible. You will submit it (in a file named CharacterIterator.java) in your
git repository at the end of the lab.

2 Lab Program
Goal. To solve a difficult problem using Iterators. (Note: This lab is a variation of the Lab from Chapter 8, modified
to use generic classes.)

Discussion. Suppose that we are given n uniquely sized cubic blocks and that each block has a face area between 1
and n. If we build two towers by stacking these blocks, how close can we get their heights? The following two towers
built by stacking 15 blocks, for example, differ in height by only 129 millionth of an inch (each unit is one-tenth of an
inch):

1



Still, this stacking is only the second-best solution! To find the best stacking, we could consider all the possible
configurations. We do know one thing: the total height of the two towers is computed by summing the heights of all
the blocks. Since the height of each block is the square root of its face area, this is:

h =

n∑
i=1

√
i =
√
1 +
√
2 + · · ·+

√
n

If we consider all the subsets of the n blocks, we can think of the subset as the set of blocks that make up, say, the
left tower. We need only keep track of that subset that comes closest to h/2 without exceeding it (where h is the total
height of all n blocks).

In this lab, we will represent a set of n distinct objects by a Vector<Double>, and we will construct an
Iterator that returns each of the 2n subsets.

2.1 Procedure
The trick to understanding how to generate a subset of n values from a Vector is to first consider how to generate a
subset of indices of elements from 0 to n− 1. Once this simpler problem is solved, we can use the indices to help us
build a Vector (or subset) of values identified by the indices.

There are exactly 2n subsets of the values from 0 to n − 1. We can see this by imagining that a coin is tossed
n times—once for each value—and the value is added to the subset if the coin flip shows a head. Since there are
2× 2× · · · × 2 = 2n different sequences of coin tosses, there are 2n different sets.

We can also think of the coin tosses as determining the values for n different digits in a binary number. The 2n

different sequences generate binary numbers in the range 0 through 2n − 1. Given this, we can see a line of attack:
count from 0 to 2n − 1 and use the binary digits (called bits) of the number to determine which of the original values
of the Vector are to be included in a subset.

Computer scientists work with binary numbers frequently, so there are a number of useful things to remember:

• A Java int type is represented by 32 bits. A Java long is represented by 64 bits. For maximum flexibility, it
would be useful to use long integers to represent sets of up to 64 elements.

• The arithmetic shift operator << can be used to quickly compute powers of 2. The value 2i can be computed
by shifting a unit bit (1) i places to the left. In Java we write this 1L << i. This works only for nonnegative,
integral powers. The constant 1L is the value one stored as a 64-bit long value. Using this constant ensures that
we are using a 64-bit shift operation resulting in a long value instead of a 32-bit operation resulting in an int
value. The ‘L‘ is important to ensure that the result is a Long.

• The “bitwise and” of two numbers can be used to determine the value of a single bit in a number’s binary
representation. To retrieve bit i of a long integer m, we need only compute: m & (1L << i).

Armed with this information, the process of generating subsets is fairly straightforward. One strategy is the following:

1. Construct a new extension to the AbstractIterator class. (Note: By extending AbstractIterator
we support both the Iterator and Enumeration interfaces.) This new class should have a constructor
that takes a Vector<E> as its sole argument. Subsets of this Vector will be returned as the Iterator
progresses.

Name this class SubsetIterator, and be sure to import structure5.* and java.util.Iterator
at the top of your file. Your SubsetIterator should be completely generic. It should know nothing about
the values it is iterating over. Thus, the declaration will be:

public class SubsetIterator<E> extends AbstractIterator<Vector<E>>

2. Internally, a long value is used to represent the current subset. This value increases from 0 (the empty set) to
2n − 1 (the entire set of values) as the Iterator progresses.

3. Write a reset method that resets the subset counter to 0.

4. Write a hasNext method that returns true if the current value is a reasonable representation of a subset.

2



5. Write a get method that returns a new Vector<E> of values that are part of the current subset. If bit i of the
current counter is 1, element i of the original Vector is included in the resulting subset Vector.

6. Write a next method. Remember it returns the current subset before incrementing the counter.

7. For an Iterator you would normally have to write a remove method. If you extend the
AbstractIterator class, this method is provided and will do nothing (this is reasonable).

Incrementally test. You can now test your new SubsetIterator by having it print all the subsets of a Vector
of values. For example, write a main method for your SubsetIterator that creates a Vector<Integer> with
the first 8 Integers (0 through 7), creates a SubsetIterator<Integer> with this Vector<Integer>, and
then prints out all subsets returned. Make sure you end up with all 256 different subsets printed.

Two Towers. To solve the two-towers problem, write a main method in a new class TwoTowers that inserts
the values

√
1,
√
2, ...,

√
n into a Vector<Double> object. (To compute the square root of n, you can use the

Math.sqrt(n) method.) A SubsetIterator is then used to construct 2n subsets of these values. The values of
each subset are summed, and the sum that comes closest to, but does not exceed, the value h/2 is remembered. After
all the subsets have been considered, print the best solution (the blocks heights are square roots, so it may be easier to
print out the areas instead).

Thought Questions. Consider the following questions as you complete the lab:

1. What is the best solution to the 15-block problem?

2. How long does it take your program to find the answer to the 20-block problem? You may time programs with
the Unix time command, as in the following:

time java -Xint TwoTowers

(The “-Xint” flag turns off some optimizations in the JVM and will give you more reliable results.)

The output from the time program contains 3 lines:

real 0m1.588s
user 0m1.276s
sys 0m0.922s

If you read the time manual page, you can see the meaning of each line. The real line shows the “wall clock”
time, which is what we care about.

Based on the time taken to solve the 20-block problem, about how long do you expect it would take to solve the
21-block problem? What is the actual time to solve the 21-block problem? How about the 25-block problem
(predicted and actual times)? Do these agree with your expectations, given the time complexity of the problem?
What about the 40- and 50-block problems? (These will take a very long time. Just estimate based on the run
times of the smaller problems).

3. This method of exhaustively checking the subsets of blocks will not work for very large problems. Consider,
for example, the problem with 50 blocks: there are 250 different subsets. One approach is to repeatedly pick
and evaluate random subsets of blocks (stop the computation after 1 second of elapsed time, printing the best
subset found). How would you implement randomSubset, a new SubsetIterator method that returns a
random subset? (Describe your strategy. You do not need to actually implement it.)

2.2 Deliverables
Complete the Prelab section (ideally) before lab on Wednesday. You may find it helpful to review the Iterators chapter
(Chapter 8) of the textbook before coming to lab.
Your final repository should contain the following:

1. Solutions to the Prelab problem in a file called CharacterIterator.java.

3



2. Your compledted SubsetIterator.java and TwoTowers.java class files.

3. Your answers to the three thought questions, included in a file called PROBLEMS.md.

As in all labs, you will be graded on design, documentation, style, and correctness. Be sure to document your
program with appropriate comments, including a general description at the top of the file, a description of each method
with pre- and post-conditions where appropriate. Also use comments and descriptive variable names to clarify sections
of the code which may not be clear to someone trying to understand it. Remember to break complex tasks into helper
methods so that your code is modular, reusable, and easier to debug.

4


