
Final Exam Study Guide
Final Exam

CSCI 136: Spring 2018
May 10

Your final will be a “closed book” exam. The exam will be held on Monday May 21 in TCL 123 at 9:30 am. You will
have 2.5 hours to complete the exam.

You are responsible for anything we covered in class or in lab, everything in the assigned reading from Java Structures,
and the handouts/problem sets. The exam is cumulative, but it will heavily weight topics from the second half of the
course. However, we used arrays, Vectors, and Lists to implement many data structures; we used and big-O notation
to evaluate and compare data structures; we used recursion to traverse trees; etc.. The second half of the semester built
heavily on previous topics.

The following non-exhaustive list may be helpful in reminding you about some of the key topics we have covered:

• Pre-Midterm

– Java syntax, as we have used it in our programming assignments.

– Classes, abstract classes, and interfaces and their respective roles.

– Information hiding (abstraction) and why it’s good.

– Extending classes with inheritance.

– Generic classes and their use.

– Pre- and post-conditions, and assertions.

– The meaning of static (and non-static) as applied to variables and methods.

– Vector, its implementation in the structure5 package, and its methods.

– Complexity: Big “O” definition.

∗ Determining the asymptotic behavior of mathematical functions.
∗ Determining the time and space complexity for a given algorithm.
∗ Worst and best case analysis.

– Linear and binary search.

– Recursion and induction.

– Sorting.

∗ Bubble sort, selection sort, insertion sort, merge sort, quicksort (and heapsort post-midterm).
∗ Using Comparator/Comparable for sorting.

– Linked lists: Singly, Doubly, and Circularly linked lists

• Post-midterm

– Stacks (LIFO)

∗ List and Vector implementations
∗ Relationship with recursion and graph/tree traversals (DFS)

– Queues (FIFO)

∗ List, Vector, and fixed-size array implementations
∗ Relationship to graph/tree traversal strategies (BFS)

– Priority queues

1



∗ OrderedVector Implementation
∗ Heap implementation

· heap property
· array representation and tree fullness/completeness
· heap insert/remove

– Trees

∗ Array/Vector-based representation
∗ Recursively-defined, pointer-based representation
∗ Binary search trees

· Binary search tree property
∗ Traversing trees (In-order, post-order, pre-order; Breadth-first, depth-first)
∗ Tree (un)balance

– Iterators

– Bitwise operations

– Graphs

∗ Directed/undirected
∗ Weighted/unweighted
∗ Adjacency List representation
∗ Adjacency Matrix representation
∗ Reachability/traversal (Breadth-first, depth-first)
∗ Minimum cost spanning trees and Prim’s algorithm
∗ Single source shortest paths and Dijkstras algorithm

– Hashtables

∗ Using a hashing function to find an object’s “bin”
∗ Hash table load factor
∗ Managing collisions (linear probing/external chaining)

Our goal is to test concepts, so it is not important to memorize the exact code or method signatures for every data struc-
ture. Descriptive variable/method names are enough to demonstrate understanding. However, it is important to know
the types of operations that different data structures do/do not support and how efficient (in the Big-O) sense these
methods are for the various implementations that we have studied. For example, we cannot access arbitrary elements in
a queue: we can only add to the back and remove from the front. And the time required to add to/remove from a queue
depends on the implementation (e.g., if a queue is implemented using a Vector, dequeueing involves removing from the
front of the Vector is O(n). Using a circularly linked list, we can add to the tail and remove from the head in O(1) time.)

Answers to odd-numbered book questions can be found in the appendix, and we have posted a sample exam on the
course webpage. Good luck!

2


