
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 8

Feb 22, 2017

Announcements

• Lab 1 returned
• Lab 3 sections start today
• Questions about warm-up?

• Next few lectures: Jon!

Last Time

• Finished implementing Vector.java
• Talked about Big-O analysis

Today’s Outline

• More on Big-O analysis
• Recursion
• Induction

Big-O Analysis

• A general tool for understanding how our
resource consumption changes as the size of
our inputs increase
• Time
• Space

• We care about trends
• Rule of thumb: ignore constants
• Consider the dominant term

5

Asymptotic Bounds (Big-O Analysis)

• A function f(n) is O(g(n)) if and only if there
exists positive constants c and n0 such that

|f(n)| ≤ c * g(n) for all n ³ n0

• “g” is bigger than “f” for large n

• Consider 2n and n2 for 0 <= n <= 4
• Which is larger?

• What about n > 4?
6

Careful Counting

• What is the Big-O cost of the following code:

public static Vector<Integer> descendingVector(int n) {
Vector v = new Vector(n); // can add n items before need to grow
for (int i = 0; i < n; i++) {

v.add(n-i);
}
return v;

}

Call v.add(i) n times

v.add(i) is O(1) unless we
must grow the array

O(n)

Careful Counting

• What is the Big-O cost of the following code:

public static Vector<Integer> descendingVector(int n) {
Vector v = new Vector(n); // can add n items before need to grow
for (int i = 0; i < n; i++) {

v.add(0, i);
}
return v;

} Only call v.add() n times, but each
requires shifting i elements.

O(n2)

Moving on…

Recursion

• General problem solving strategy
• Base case

• The smallest, often simplest, version of a problem.
• Where our code “bottoms out”

• Inductive leap
• We assume we have a solution to a smaller version of

our problem, and we solve our current version of the
problem using that solution.

Recursion is Beautiful

• Many algorithms are recursive
• Often easier to understand (and prove

correctness/state efficiency of) than iterative
versions

• Today we will review recursion and then talk
about techniques for reasoning about
recursive algorithms

Factorial

• n! = n x (n-1) x (n-2) x … x 1
• How can we implement this?
• We could use a while loop…

• But we could also write it recursively
• n! = n x (n-1)!

Factorial

• In recursion, we always use the same basic
approach

• What’s our base case?
• n=0; fact(0) = 1

• What’s our recursive case?
• n>0; fact(n) = n x fact(n-1)

fact.java
public class fact{

public static int fact(int n) {
if (n==0) {

return 1;
}
else {

return n*fact(n-1);
}

}

public static void main(String args[]) {
System.out.println(fact(Integer.valueOf(args[0]).intValue()));

}

}

fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Factorial

Mathematical Induction

• The mathematical equivalent of recursion is
induction

• Induction is a proof technique
1. Prove all necessary base cases

2. State that the assumption holds for all values from
the base case up to (but not including) the nth case.

3. Prove that, using the simpler cases, the nth case
holds.

4. Claim that by induction on n, it is true for all cases
more complicated than the nth case

Mathematical Induction

• Examples

• Proof by induction:
• Base case: P is true for 0

• Inductive hypothesis: If P is true for all k<n, then P
is true for n.

• P is true for n using the inductive hypothesis.

€

P = i = 0 +1+ ...+ n =
n(n +1)
2i= 0

n

∑

• Base case: P is true for 0

• Inductive hypothesis: P is true for all k<n.
• Show P is true for n using the inductive hypothesis.

€

P = i = 0 +1+ ...+ n =
n(n +1)
2i= 0

n

∑

0 =
0(0 + 1)

2

0 + 1 + 2 + . . .+ (n� 1) + n

[0 + 1 + 2 + . . .+ (n� 1)] + n

(n� 1)((n� 1) + 1)

2

�
+ n

n2 + n

2
+

2n

2
n2 + n

2
n(n+ 1)

2

Use our inductive
hypothesis (for n-1)

Induction in CS?

• What does induction have to do with recursion?
• Same form!

• Base case

• Inductive case that uses simpler form of problem

• Example: factorial
• Prove that fact(n) requires n multiplications

• Base case: n = 0 returns 1, 0 multiplications
• Assume true for all k<n, so fact(k) requires k multiplications.

• fact(n) performs one multiplication (n*fact(n-1)). We know that
fact(n-1) requires n-1 multiplications. 1+n-1 = n, therefore fact(n)
requires n multiplications.

Problem Solving

• Write a function that takes a String as input
and returns a new String where the characters
are in reverse order.

• Write the Vector.add(int index, E element)
method as a recursive function.

What is your base case?
What is your inductive leap?

Visualizing Reverse

reverse("ABC")

reverse("BC")

reverse("C")

reverse("")

""

"" + 'C' = "C"

"C" + 'B' = "CB"

"CB" + 'A' = "CBA"

Mathematical Induction

• Prove:

• Prove:
€

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 −1
i= 0

n

∑

€

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

Lab Warm Up Problems
• Digit Sum

• public static int digitSum(int n)

• Base case?

• Recursive case?

• Subset Sum
• public static boolean canMakeSum(int set[], int target)

• Helper:
• public static boolean canMakeSumHelper(int set[], int target, int index)

• Base case?
• Recursive case?

Recursion Tradeoffs

• Advantages
• Often easier to construct recursive solution
• Code is usually cleaner
• Some problems do not have obvious non-

recursive solutions

• Disadvantages
• Overhead of recursive calls
• Can use lots of memory (need to store state for

each recursive call until base case is reached)

