
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 7

Feb 19, 2017

Announcements

• Questions about Lab 2?
• Lab 3 will be handed out today
• Lots of thinking…little typing
• Problems can be done in any order!

• Recursion can be frustrating…be patient!

Last Time

• Generics
• Started implementing vectors
• add(int index, E element), remove(int index):

• Require shifting

• add(int index, E element), add(E element):
• Vectors must *grow* as we add more elements

• How to expand a Vector’s internal array?

Today’s Outline

• Wrap up Vectors
• Learn about Big-O analysis
• Briefly discuss recursion
• More next class, but quick recursion review for

lab this week…

add(), remove()

1 2 3 4 5 6 7 8

8

Vector v

v.add(0,0);

v.remove(3);

Copy from
right to left!

Copy from
left to right!

Growing Vectors

Vector v = new Vector(1);
v.add(0);
for (int i = 0; i < n; i++) {

v.add(i);
}

6

Grow to meet
new capacity.

Double the current
capacity.

Growing Vectors

• Two ways to grow when adding n new
elements to Vector:
• Additive increase (add some constant factor)

• Requires ~n2/2 operations (or copies)

• Multiplicative increase (double)
• Requires ~n operations

• Which is better?
• Is there a tradeoff?

7

Vectors

• These questions relate to the time and space
tradeoff
• We could just as easily avoid all copy operations

by making a huge Vector/array initially…
• …but this wastes space and is inefficient

8

Shrinking the Array

• When should we shrink the array in Vector
implementation?
• When 1/2 full?

• When 1/4 full?

• We shrink when 1/4 full…
• Can get bad performance if array size changes

too frequently

9

Vector Constructors
protected Object elementData[]; // the data
protected int elementCount; // number of elements in vector

public Vector() {
this(10);

}

public Vector(int initialCapacity) {
elementData = new Object[initialCapacity];
elementCount = 0;

}

// pre: initialCapacity >= 0, capacityIncr >= 0
// post: constructs an empty vector with initialCapacity capacity
// that extends capacity by capacityIncr, or doubles if 0
public Vector(int initialCapacity, int capacityIncr) {

elementData = new Object[initialCapacity];
elementCount = 0;
capacityIncrement = capacityIncr;

}
10

Vector Constructors
protected Object elementData[]; // the data
protected int elementCount; // number of elements in vector
protected int capacityIncrement; // the rate of growth for vector

public Vector() {
this(10);

}

public Vector(int initialCapacity) {
elementData = new Object[initialCapacity];
elementCount = 0;
capacityIncrement = 0;

}

// pre: initialCapacity >= 0, capacityIncr >= 0
// post: constructs an empty vector with initialCapacity capacity
// that extends capacity by capacityIncr, or doubles if 0
public Vector(int initialCapacity, int capacityIncr) {

elementData = new Object[initialCapacity];
elementCount = 0;
capacityIncrement = capacityIncr;

}
11

ensureCapacity()
public void add(E element) {

ensureCapacity(elementCount+1);
. . .

}

public void ensureCapacity(int minCapacity) {
if (elementData.length < minCapacity) {

if (capacityIncrement == 0) {
//double the array

} else {
//grow by capacityIncrement

}
//copy elements to new array

}
}

12

Growing the Array

• Vector.java
• ensureCapacity()

• Chapter 3 of Bailey

Observations about Vectors

• How long does it take to add an element?
• Varies – sometimes takes a lot longer if we have

to grow array before adding element

• How long does it take to insert/remove an
element in the middle of the Vector?
• Might take a long time if we have to move several

other elements

• Key insight: The running time depends on the
size of the Vector!

14

Running Time Analysis

• We want general tools for understanding how
running time and memory usage changes as
the amount of data increases

• Example:
• If I double my Vector’s size, how much longer will

it take to:
• Find an element?
• Insert an element at the front?
• Remove an element from the middle?
• Etc.

15

Measuring Computational Cost

• How can we measure the cost of a
computation?
• Absolute clock time

• Problems?
– Different machines have different clocks

– Lots of other stuff happening (network, OS, etc)

– Not consistent. Need lots of tests to predict
future behavior

16

Measuring Computational Cost

• How can we measure the cost of a
computation?
• Count how many “expensive” operations were

performed (i.e., array copies in Vector)
• Count number of times “x” happens

• For a specific event or action “x”
• i.e., How many times a certain variable changes

• Problems?
• 64 vs 65? 100 vs 105? Does it really matter??

17

Measuring Computational Costs

• Rather than keeping exact counts, we want to
know the order of magnitude of occurrences
• 60 vs 600 vs 6000, not 65 vs 68

• We want to make comparisons without
looking at details and without running tests

• Avoid using specific numbers or values
• Look for overall trends

18

Looking for Trends

• Rule of thumb: ignore constants (most of the
time…)

• Examples:
• Treat n and n/2 as same order of magnitude

• n2/1000, 2n2, and 1000n2 are “pretty much” just n2

(behave in same way)

• a0nk + a1nk-1 + a2nk-2 + … ak is roughly nk

• The key is to find the most significant or
dominant term

19

Asymptotic Bounds (Big-O Analysis)

• A function f(n) is O(g(n)) if and only if there
exists positive constants c and n0 such that

|f(n)| ≤ c * g(n) for all n ³ n0

• “g” is bigger than “f” for large n
• Example:
• f(n) = n2/2 is O(n2)
• f(n) = 1000n3 is O(n3)
• f(n) = n/2 is O(n)

20

|f(n)| ≤ c * g(n) for all n ³ n0

[https://upload.wikimedia.org/wikipedia/commons/8/89/Big-O-notation.png]

Determining Upper Bound

• We usually want the smallest upper bound to
estimate running time

• Example:
• f(n) = 3n2

• f(n) is O(n2)
• f(n) is O(n3)
• f(n) is O(2n)

• Best estimate of running time is O(n2)
• We might care about c and n0 in practice, but

focus on size of g when designing structures

22

Vector Operations

• For Object o, int i, and n elements:
• set(i, o)
• add(o)

• add(i, o)
• remove(i)
• add(o) executed n times

• add(i, o) executed n times

23

Vector Operations

• For Object o, int i, and n elements:
• set(i, o) – O(1)
• add(o) – O(1)

• add(i, o) – O(n)
• remove(i) – O(n)
• add(o) executed n times – O(n)

• add(i, o) executed n times – O(n^2)

24

Common Functions
For n = number of elements:
• O(1): constant time and space
• O(log n): divide and conquer algorithms, binary search
• O(n): linear dependence, simple list lookup
• O(n log n): divide and conquer sorting algorithms
• O(n2): matrix addition, selection sort
• O(n3): matrix multiplication
• O(nk): cell phone switching algorithms
• O(2n): color graph with 3 colors, satisfiability
• O(n!): traveling salesman problem

25

Input-dependent Running Times
• Algorithms may have different running times for

different input values
• Best case

• Sort already sorted array in O(n)
• Find item in first place that we look O(1)

• Worst case
• Don’t find item in list O(n)
• Reverse order sort O(n2)

• Average case
• Linear search O(n)
• Sort random array O(n log n)

26

Moving on…

Recursion

• General problem solving strategy
• Break problem into smaller pieces
• Sub-problems may look a lot like original - may in

fact by smaller versions of same problem

• Examples

Recursion

• Many algorithms are recursive
• Can be easier to understand (and prove

correctness/state efficiency of) than iterative
versions

• Today we will review recursion and
Wednesday we will talk about techniques for
reasoning about recursive algorithms

Factorial

• n! = n • (n-1) • (n-2) • … • 1
• How can we implement this?
• We could use a while loop…

• But we could also write it recursively
• n! = n • (n-1)!

fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Factorial

Factorial

• In recursion, we always use the same basic
approach

• What’s our base case?
• n=0; fact(0) = 1

• What’s our recursive case?
• n>0; fact(n) = n • fact(n-1)

fact.java
public class fact{

public static int fact(int n) {
if (n==0) {

return 1;
}
else {

return n*fact(n-1);
}

}

public static void main(String args[]) {
System.out.println(fact(Integer.valueOf(args[0]).intValue()));

}

}

