CSClI 136
Data Structures &
Advanced Programming

Bill Jannen

Lecture 6
Feb I5, 2017



Announcements

e How was Lab |?

e Lab 2 is a little tricky (but fun)
* Bring your design docs to Lab!

e Useful references in the book: read the handout carefully



Last Time

* Learned about assertions and pre/post conditions
assert <condition> : <error message>;
* Compile code normally, but run with:

$ java —enableassertions <program>
* Discussed Associations
e Key-value pairs

e General-purpose class: keys and values are Objects



Review: Association Class

import structure5.*;

class Association {
protected Object key;
protected Object value;

//pre: key != null
public Association (Object key, Object value) {

assert (key!=null) : “Null key”;
this.key = key;
this.value = value;

public Object getKey() {return this.key;}
public Object getValue() {return this.value;}

public Object setValue(Object value) {
Object old = this.value;
this.value = value;
return old;



Person.java (once More)

Shaquille O’Neal: 7°1”
(aka The Big Shamrock,
Shaq Fu, ...)

Simone Biles: 4 9”




Review: Association Class

import structure5.*;

class Association <K, V> {
protected K key;
protected V value;

//pre: key != null

public Association (K key, V value) {
assert (key!=null) : “Null key”;
this.key = key;
this.value = value;

public K getKey() {return this.key;}
public V getValue() {return this.value;}

public V setValue(V value) {
V old = this.value;
this.value = value;
return old;



Generics

e Casting is dangerous

e ...but sometimes unavoidable
e Generics let us catch type errors at compile time

* We can’t construct generic arrays

* Vector.java shows how to handle this



Today’s Outline

e Learn about Vectors
* Dynamically resizable array

 Easier to use (in most cases) than arrays

* How are Vectors implemented?



Searching Vectors

* |f we were implementing Vector.contains(myObject), what would we
do!?
* Loop through elements and return true if one element equals myObiject
* What does this require!?
* Properly defined equals() method in myObiject class!

* (== checks if two objects are the same object, not if they are logically equivalent)



Notes About Vectors

* Primitive Types and Vectors

Vector v = new Vector();
v.add(5);

e This (technically) shouldn’t work! Can’t use primitive data types with
vectors...they aren’t Objects!

e (But Javais now smart about some data types, and converts them
automatically for us -- called autoboxing)

* We used to have to “box” and “unbox” primitive data types:

Vector<Integer> v = new Vector<Integer>();
Integer num = new Integer(5);
v.add(num);

Integer result = v.get(0);
int res = result.intValue();

e Similar wrapper classes (Double, Boolean, etc) exist for all
primitives



Vector Summary So Far

* Vectors: “extensible arrays” that automatically manage adding
elements, removing elements, etc.

|. Use generics to specify type when creating a new Vector<k>

2. Use wrapper classes (with capital letters) for primitive data types
(use “Integers” not “ints”)

3. Define equals() method for Objects being stored if contains(),
indexOf(), etc. is needed



Implementing Vectors

Vectors are really just arrays of Objects

Key difference is that the number of elements can grow
and shrink dynamically

How are they implemented in Java?

* What instance variables do we need?

* What methods? (start simple)

Constructor(s): Vector(), Vector(size),

get(index), set(index, Obj), add(Obj),

add(index, Obj), remove(index), isEmpty(), size()
(we'll finish some of these next time!)



Vector.java



Lab 2

Three classes:
e Table.java: Vector< Association< String, FrequencyList> >
* FrequencylList.java: Vector< Association<String, Integer> >

* WordGen.java: main method

Two Vectors of Associations

Implement toString() in Table and FrequencyList for debugging!
What are the key stages of execution?

e Test code thoroughly before moving on to next stage



