
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 6

Feb 15, 2017

Announcements

• How was Lab 1?
• Lab 2 is a little tricky (but fun)
• Bring your design docs to Lab!
• Useful references in the book: read the handout carefully

Last Time

• Learned about assertions and pre/post conditions
assert <condition> : <error message>;

• Compile code normally, but run with:
$ java –enableassertions <program>

• Discussed Associations
• Key-value pairs
• General-purpose class: keys and values are Objects

Review: Association Class
import structure5.*;
class Association {

protected Object key;
protected Object value;

//pre: key != null
public Association (Object key, Object value) {

assert (key!=null) : “Null key”;
this.key = key;
this.value = value;

}

public Object getKey() {return this.key;}
public Object getValue() {return this.value;}

public Object setValue(Object value) {
Object old = this.value;
this.value = value;
return old;

}
}

Person.java (once More)

Shaquille O’Neal: 7’ 1”
(aka The Big Shamrock,
Shaq Fu, …)

Simone Biles: 4’ 9”

Review: Association Class
import structure5.*;
class Association <K, V> {

protected K key;
protected V value;

//pre: key != null
public Association (K key, V value) {

assert (key!=null) : “Null key”;
this.key = key;
this.value = value;

}

public K getKey() {return this.key;}
public V getValue() {return this.value;}

public V setValue(V value) {
V old = this.value;
this.value = value;
return old;

}
}

Generics

• Casting is dangerous
• …but sometimes unavoidable

• Generics let us catch type errors at compile time
• We can’t construct generic arrays
• Vector.java shows how to handle this

Today’s Outline

• Learn about Vectors
• Dynamically resizable array
• Easier to use (in most cases) than arrays

• How are Vectors implemented?

Searching Vectors

• If we were implementing Vector.contains(myObject), what would we
do?
• Loop through elements and return true if one element equals myObject

• What does this require?
• Properly defined equals() method in myObject class!

• (== checks if two objects are the same object, not if they are logically equivalent)

Notes About Vectors
• Primitive Types and Vectors

Vector v = new Vector();
v.add(5);

• This (technically) shouldn’t work! Can’t use primitive data types with
vectors…they aren’t Objects!

• (But Java is now smart about some data types, and converts them
automatically for us -- called autoboxing)

• We used to have to “box” and “unbox” primitive data types:
Vector<Integer> v = new Vector<Integer>();
Integer num = new Integer(5);
v.add(num);
…
Integer result = v.get(0);
int res = result.intValue();

• Similar wrapper classes (Double, Boolean, etc) exist for all
primitives

Vector Summary So Far

• Vectors: “extensible arrays” that automatically manage adding
elements, removing elements, etc.

1. Use generics to specify type when creating a new Vector<E>

2. Use wrapper classes (with capital letters) for primitive data types
(use “Integers” not “ints”)

3. Define equals() method for Objects being stored if contains(),
indexOf(), etc. is needed

Implementing Vectors
• Vectors are really just arrays of Objects
• Key difference is that the number of elements can grow

and shrink dynamically
• How are they implemented in Java?
• What instance variables do we need?
• What methods? (start simple)

• Constructor(s): Vector(), Vector(size),
get(index), set(index, Obj), add(Obj),

add(index, Obj), remove(index), isEmpty(), size()
(we’ll finish some of these next time!)

Vector.java

Lab 2

• Three classes:
• Table.java: Vector< Association< String, FrequencyList> >

• FrequencyList.java: Vector< Association<String, Integer> >

• WordGen.java: main method

• Two Vectors of Associations
• Implement toString() in Table and FrequencyList for debugging!
• What are the key stages of execution?

• Test code thoroughly before moving on to next stage

