
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 5

Feb 13, 2017

Announcements

• Lab 1 is due today
• Wednesday Labs: 7pm
• Thursday Lab: 10pm

• Lab 2 will be posted today
• Read it and do the prep before your lab section

Last Time

• Continued reviewing Java

• Arrays

• Strings

• Histograms

• java.util.Random

• public static void main(String args[])

Today’s Outline

• Refresher of the “static” keyword
• Quick review of Strings
• Learn about pre/post conditions and assertions
• Discuss Associations and Vectors
• We need to go quickly… we will revisit topics on Wednesday

Static vs. Non-static

Static variables
• One copy shared by all instances
• Accessed using the class name

Instance variables
• Unique copies for each class instance

• Describe the internal state of an object

• Can always use this.___ to refer to an instance variable

Static vs. Non-static

Static methods
• Do not depend on any internal state

• Cannot use this.___ variables/methods
• Necessary inputs are passed as parameters (or are static)

• Called using the class name

Non-static methods
• Depend on the internal state of an object

• Use this.___ instance variables/methods

• Called on an object instance

Static vs. Non-static Example: Person.java

Shaquille O’Neal: 7’ 1”
(aka Shaq Diesel, Superman,
The Big Aristotle, …)

Simone Biles: 4’ 9”

Quick Review: Strings in Java

• Useful methods (also check javadocs)
• indexOf(string);
indexOf(string, startIndex);

• substring(start, end); //[start,end)
• charAt(int index);
• equals(other);
• toLowerCase();
• toUpperCase();
• compareTo(string);
• length();
• startsWith(string);

Using Strings
• Suppose we want to parse an XML listing of our

music library
• XML = eXtended Markup Language
• XML is used for many things
• CD info:

<CD>
<TITLE>Shaq Diesel</TITLE>
<ARTIST>Shaquille O’Neal</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Jive Records</COMPANY>
<YEAR>1993</YEAR>

</CD>

• How can we find and print just the titles?
• See CDTitles.java
• Redirecting System.in in Unix: java CDTitles < cds.xml

Moving on…

Pre and Post Conditions

• Recall charAt(int index) in Java String class
• What are the pre-conditions for charAt?

• 0 <= index < length()

• What are the post-conditions?
• Method returns char at position index in string

• We put pre and post conditions in comments above most methods
/* pre: 0 ≤ index < length
* post: returns char at position index
*/
public char charAt(int index) { … }

Pre and Post Conditions

• Pre and post conditions “form a contract”
• Your method should guarantee that the post-condition is true

if called when the pre-condition is true
• Examples:

• s.charAt(s.length() - 1): index < length, so valid
• s.charAt(s.length() + 1): index > length, not valid

• These conditions document requirements that the program
should satisfy

Java Assertions

• Pre and post condition comments are useful as a programmer,
but it would be really helpful to know as soon as a pre-
condition is violated (and return an error)

• Java’s assert keyword let’s us enforce conditions in our
running code.

assert <condition> : <error-msg>;

• The Assert class (in structure5 package) was necessary when
the book was written, but assert is now a part of the language

Assert Example: Fill.java

General Rules about Assertions

1. State pre/post conditions in comments
2. Check conditions in code using “assert”
3. Fail in unexpected cases (such as the default block of a switch

statement)
4. Run your code with the -ea flag (-enableassertions)

$ java –ea Program

• Any questions?
• You should use Assertions in Lab 2

Moving on…Dictionary Class

• Now we’re going to discuss our first general data structure!

• What is a Dictionary?
• Really just a map from word to definition…
• We will call these mappings Associations

• Task: given word, lookup and return definition
$ java Dictionary <word>

• Prints definition

Other Associations
• Websters:
• Word ® Definition

• MtnOne:
• Account number ® Balance

• Peoplesoft:
• Student name ® Grades

• NSA:
• SSN ® ???

• In general:
• Key ® Value

Association Class

• We want to capture the “key ® value” relationship in a
general class that we can reuse everywhere

• What type do we use for key and value instance variables?
• Object!

• We can treat any thing as an Object since all classes inherently
extend Object class in Java…

Association Class (see javadoc)
import structure5.*;
class Association {

protected Object key;
protected Object value;

//pre: key != null
public Association (Object K, Object V) {

Assert.pre (K!=null, “Null key”);
key = K;
value = V;

}

public Object getKey() {return key;}
public Object getValue() {return value;}
public Object setValue(Object V) {

Object old = value;
value = V;
return old;

}
}

Dictionary Class

• Now that we have an Association class, let’s implement
Dictionary.java

• A Dictionary object is really just a collection of Associations
• What should we use to store our Associations?
• An array!

Dictionary.java (version 1)
protected Association words[] = new Association[5];
public Dictionary() {

words[0] = new Association("perception", "Awareness of an
object of thought");

words[1] = new Association("person", "An individual capable of
moral agency");

words[2] = new Association("pessimism", "Belief that things
generally happen for the worst");

words[3] = new Association("philosophy", "Literally,
love of wisdom.");

words[4] = new Association("premise", "A statement whose
truth is used to infer that of others");

}

// post: returns the definition of word, or "" if not found.
public String lookup(String word) {

for (int i = 0; i < words.length; i++) {
Association a = words[i];
if (a.getKey().equals(word)) {

// note cast to recover type from Object
return (String)a.getValue();

}
}
return "";

}

Problems with Arrays

• Dictionary is a fixed size
• How do we support addWord?

• Possible solutions:
• Big array and keep a counter of current number of words

• Error prone. What if we run out of space in array?

• Big array-like data structure that can dynamically grow and manage
itself

Vectors

• Vectors are collections of Objects
• Methods include:

• add(Object o), remove(Object o)
• contains(Object o)
• indexOf(Object o)
• get(int index), set(int index, Object o)
• remove(int index)
• add(int index, Object o)
• size(), isEmpty()

Dictionary.java (version 2)
protected Vector defs;
public Dictionary() {

defs = new Vector();
}

public void addWord(String word, String def) {
defs.add(new Association(word, def));

}

// post: returns the definition of word, or "" if not found.
public String lookup(String word) {

for (int i = 0; i < defs.size(); i++) {
Association a = (Association)defs.get(i);
if (a.getKey().equals(word)) {

return (String)a.getValue();
}

}
return "";

}

Dictionary.java (version 2)
public static void main(String args[]) {

Dictionary dict = new Dictionary();
dict.addWord("perception", "Awareness of an object of thought");
dict.addWord("person", "An individual capable of moral agency");
dict.addWord("pessimism", "Belief that things generally happen for the
worst");
dict.addWord("philosophy", "Literally, love of wisdom.");
dict.addWord("premise", "A statement whose truth is used to infer that of
others");

}

Recap

• Preconditions and postconditions define a contract for our
methods

• Assertions can verify our assumptions + give useful feedback
• Must be enabled (disabled by default for performance reasons)

• Dictionaries map keys to values
• The Association class contains a key-value pair
• Vectors are like arrays, but they can grow!

Next Class

• All about Vectors
• What are “Generics”?
• The principle of abstraction

