#Hashing

CS136
May 10
Bill Jannen

Administrative Detalls

e No lab this week
e Sample exam, study guide online
® Review next Monday, 7-9pm, Physics 203

e Questions about the Final?

Applications of Hashing

® Hash tables
e Sets/Membership Queries
e Checksums/Integrity

e Duplicate Detection

Quick Hash Table Review

*A hash function maps a key to an index

e [he Index specifies a hash table bin where the key-
value pair should be stored.

e Assuming:
eComputing the hash function is O(1)
eBins have O(1) random access (e.g., an array)

e \We can get/put key-value pairs in O(1) time!!!

Problems?

o [ypically, the domain (set of possible keys) is larger
than the range (possible of hash function outputs)

(\ h
2 —
All Possible Strings l oo
(Domain) n;egers
e
_ Rt

e Multiple keys will map to the same bin

Managing Collisions

e Collision: two keys map to the same bin

e \We can minimize cost of collisions in a few ways:
e Use an array with a (relatively) prime-number-length
» Why?
e Use a hash function that uniformly distributes keys
across the range
o Keep the load factor low

lechniques to Resolve
Collisions

e Linear Probing
¢ \When something else Is in our bin, scan and insert
into the first bin without an element
e \When we delete a key-value pair, drop a placeholder
note that other elements may have been shifted past
the newly "emptied” bin

e External Chaining
® [nstead of key-value pairs, each bin holds a list
® [0 insert: place a key-value pair at end of its bin’s list
e Downside: extra space required to store lists

New Technique: Cuckoo
Hasning

Pure Evil

lTechniques to Resolve
Collisions

e Cuckoo Hashing

e Select 2 independent hash functions

e A key can now land in 1 of 2 places

e Resolve collisions by “pushing” others
out of our bin and placing them in the

bin associated with their other hash

e [he process may need to repeat

We must avoid

e \What happens when we: cycles:

e put(X) where hash,(X) = 07

e pUt(Y) where hash(Y) = 77

Cuckoo Hashing

e For iIndependent hash functions and low load tactor,
O(1)

eNo clusters like we have with linear probing
e No shifting “down the line” on inserts

e At most 2 checks per lookup

Membership Queries

Vlemory Hierarchy

* Problem 1: Sometimes (almost always) we have
more data than fits in memory

e Solution: Store a subset of our data in a cache

e \When we need something
that isn't In cache, we kick
out the least valuable to

make room for the thing we
need

Vlemory Hierarchy

e Problem 2: Not all levels in our cache have the
same cost

Vlemory Hierarchy

e Problem 2: Not all levels in our cache have the
same cost

< CPU =

Vlemory Hierarchy

e Problem 3: Not all levels in our cache have the
same speed

H cpu B

T Q

\
N
b —
T e e
. “-71"'&“.'
‘a
-
,
N

Vlemory Hierarchy

e Result: we have a lot of slow, cheap storage, less
RAM, and very little CPU cache.

e \WVe will focus on the Iinteraction between RAM
and disk

6‘ Fast,
¢ .. & expensive,

¢ B o
¢ ‘scarce

Slow,
cheap,
“plentiful

Scenario: Photo Storage

 We have a small RAM cache that holds 2 photos
* Our cache is initially empty

 We read from disk into cache, and evict the least
recently used photo when we need space

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

get(cat)

Small, fast

Vlemory Hierarchy

get(cat)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

Small, fast

Vlemory Hierarchy

get(cat)
get (cow)
get (dog) B Small, fast

Vlemory Hierarchy

get(cat)
get (cow)

get (dog) {H i? Small, fast

Vlemory Hierarchy

Vlemory Hierarchy

Small, fast

Big, slow

P

e N

Vlemory Hierarchy

Small, fast

Big, slow

P

e N

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

Small, fast

Vlemory Hierarchy

* Problem: We paid an expensive cost just to find out
the thing we were looking for didn't exist!!

e l[dea: Cache a set of all the keys (names of all
photos on disk)

e Check the set first *before* checking disk

e Don’'t go to disk if we know the thing isn't there

Membership Queries

e How to implement?
o|f we want to look things up quickly, use a hash
table

e |[f we want to avoid collisions:

e Make It big
e Use a large hash so to uniquely fingerprint each
file (P(collision) == small)

e New problem: keys can be long, fingerprint is large.
Now our set takes up a large portion of our cache

Membership Queries

e Insight: we don't need to be perfect.

e [f we go to disk an extra time, no worse oft
e [False positives are not ideal, but they are OK

e [f we don't go to disk when something exists, BAD (or sick)
e [alse negatives are correctness bugs, not OK

e \We will build a structure that does approximate
membership queries and is more efficient than a set.

Bloom Filter

e Answers with “possibly in set” or “definitely not in set”
e \We save space by not explicitly storing hashes or keys

e How It works:
e Create a bit array of m bits
e Select k hash functions
e Hash each element ktimes and set all k bits
e An element is missing If any of its k bits is unset
e An element may be present if all of its k bits are set

Bloom Filters

Insert(key):
for hashFunction; in hashFuncions; k:
bitmap[hashFunction;(key) % m] = 1
Query(key):
for hashFunction; in hashFuncions; k:
1f (bitmap[hashFunction;i(key) % m] != 1):

return “not in set”
return “maybe 1n set”

Bloom Filters

e Deleting keys?

e An key maps to k bits, and although setting any one of
those k bits to zero would remove that key from the set, it
may also remove any key that maps to one of those bits.

e Deleting would introduce false negatives!

e Resizing Bitmap?
e No way to grow array using just the bit values
e Although keys are not stored, they are often available
e \When the false positive rate gets too high (overloaded,
too many “deletes” still in bitmap), read keys from slower
media and resize+rehash

Integrity/Tamper
Evidence

Detecting Changes

e Sometimes we can't trust the integrity of our stuff

e Qur laptop is from 2006, and our HDD is ready to go...

e \\e store our data in the cloud and we don't trust “the
man’

e \We live In a place with government censorship and we
want to ensure no one has modified a document

¢ \We download something from the internet and we are
afraid a “man-in-the-middle” has given us a decoy

Detecting Changes

e Observation: cryptographic hash functions have the
following properties
e Deterministic
e Non-invertible (given hash (x) impractical to find x)
e | arge Range (many bits in hash)
e Evenly distributed

* Insight: It we pick a good enough hash function, we can
trust it to uniquely identity the contents

* (related ideas: checksumming/tingerprinting)

Detecting Changes

e Calculate a fingerprint (cryptographic hash) of objects that
we store, and we keep the fingerprint safe

e [f we later retrieve the thing we stored, recompute the
fingerprint
e |f they match, we are (almost) guaranteed to be safe
e |f they differ by even one bit, there is a problem

Detecting Changes

e Download verification (MD5 example)
e Scanning files for errors
e Git

Detecting Duplicates

Deduplication

* |magine you are a cloud storage provider, and someone
uploads Shoot_Pass_Slam.mp3
e Millions of other people will as well (Shag Diesel went
olatinum after all)
e Do we really need to store millions of copies of the
same file?
e NO! Hash tables/sets can map duplicate keys to the
same value
e Map every file called “Shoot_Pass_Slam.mp3” to the
same file contents
e \What if the file names different?

Deduplication

Instead of mapping:
file name -> file contents
map:
file name -> hash of contents
Then have a separate key-value store mapping:

hash of contents -> file contents

e Insight: many problems in computer science can be
solved with a layer of indirection!

Deduplication

e \What if we aren't storing music, but file that are actively
modified”?
e \We may not want to deduplicate at the coarse
granularity of whole files

e [nstead, break a file into chunks, and deduplicate chunks

e Now:
file name -> recipe*

*A recipe contains (file offset, chunk length, fingerprint) triples

summary

Hashing is a powerful technique with many uses
We can build interesting new data structures
We can add new twists to existing data structures

We must be careful to use the right hash function
for the task

