CSCI 136 Data Structures & Advanced Programming

> Bill Jannen Lecture 32 May 3, 2017

#### Administrative Details

- Lab 10 Today/Thursday
  - Bring design documents to lab!
- Quick Hexapawn Demo?

- Lab 10 is the last lab...
  - Next week we will post a sample exam instead
- Review session:
  - Monday 5/15 from 7-9pm in Physics 203

# Last Time (Monday)

- Finished Binary Search Trees
  - predecessor(), remove()
  - Game Trees
    - For lab, you don't need to implement backwards induction
    - ComputerPlayer moves randomly, but...
    - Each time ComputerPlayer loses, prune losing node

# Today's Outline

- Introduction to Graphs!
  - Examples
  - Terminology
  - 2 Representations

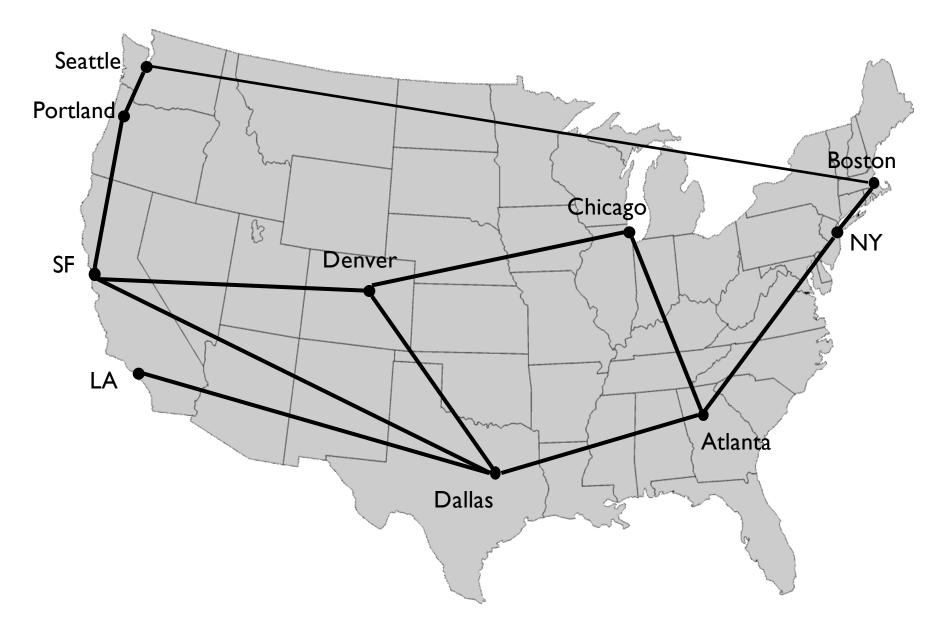
# Putting Data Structures in Context

#### • Types of data structures

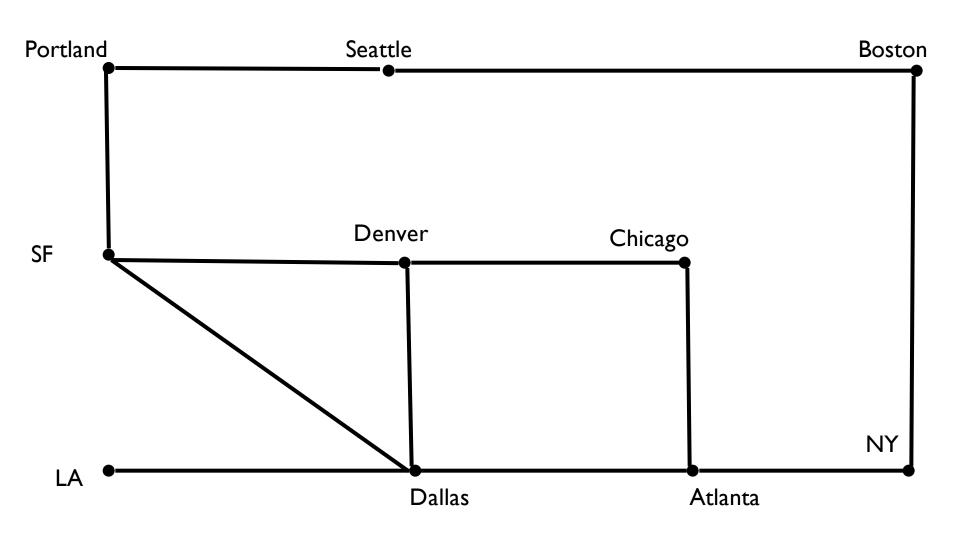
- Basic Lists/Vectors (no ordering relation)
- Linear Stacks/Queues (ordered by insertion)
- Ordered Structures value ordering
- Tree hierarchical ordering
- BST value ordering (in a hierarchical fashion)
- Next up: Graphs
  - The most general way to describe relationships between data

#### Graphs

- Definition
  - A graph is a collection of vertices (nodes) and edges (links) connecting them
- Let's use real world examples for intuitions



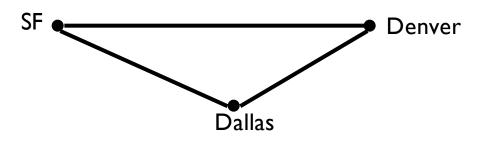
Nodes = cities; Edges = lines connecting cities



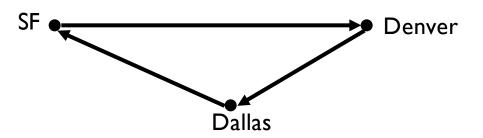
Note: Structure of graph matters, not actual placement of nodes

# Types of Graphs

- Undirected
  - All edges are bi-directional

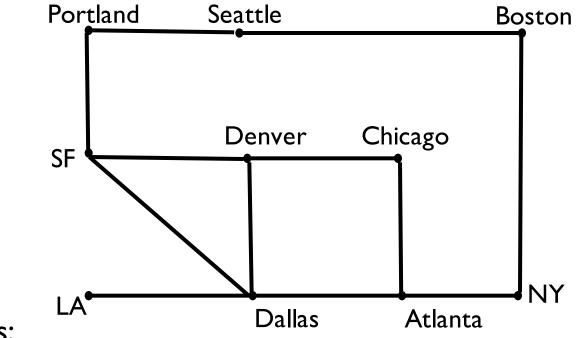


- Directed
  - Edges have a source and destination



#### Paths

- A *path* is a sequence of distinct edges between two nodes
- A cycle is a path that starts and ends at the same node

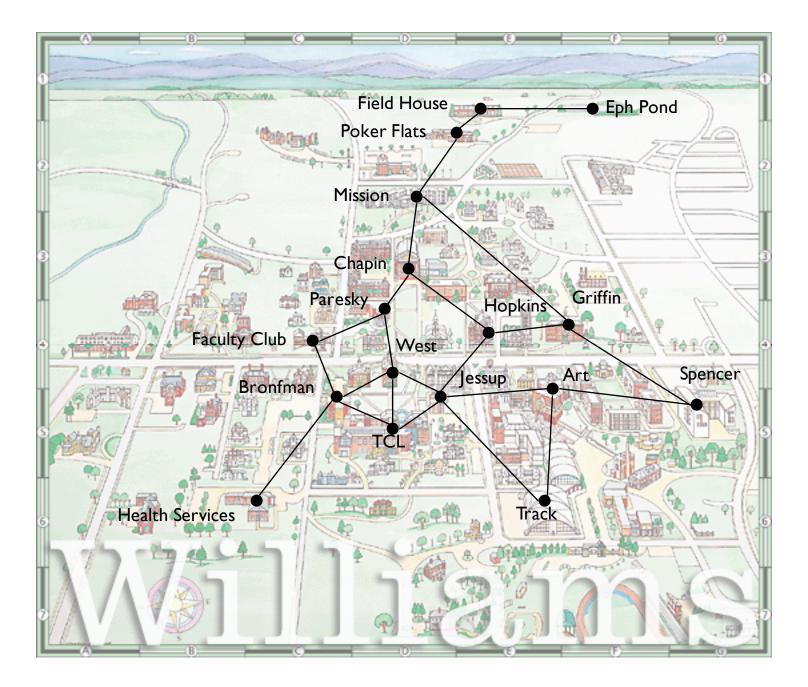


- Questions:
  - What is the shortest path from SF to Boston?
  - What is the shortest cycle from SF to SF that goes through Dallas and Chicago?

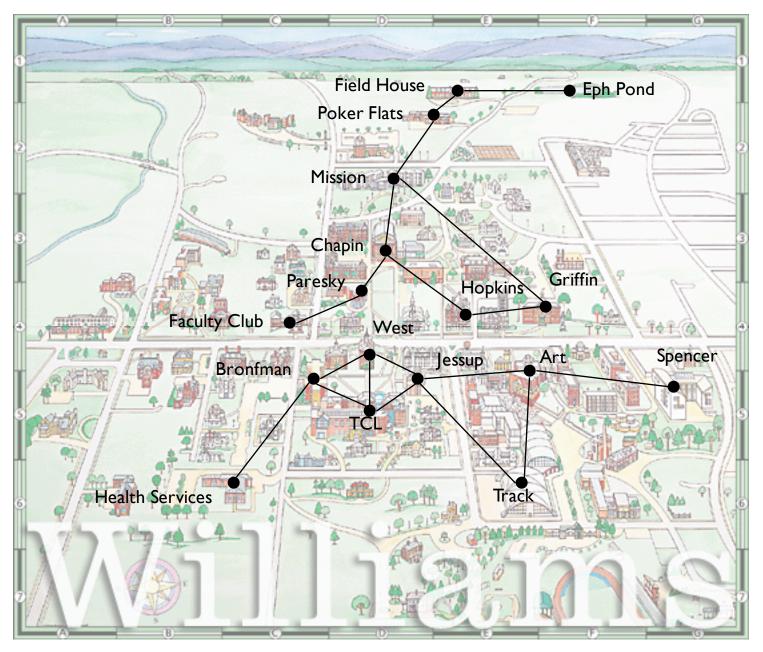
#### Connectedness

Nodes U and V are connected if there is an edge between U and V

- A connected component is a set S where there is a path between every vertex pair in S
- A fully connected component is a set S where there is an edge between every pair of vertices in S

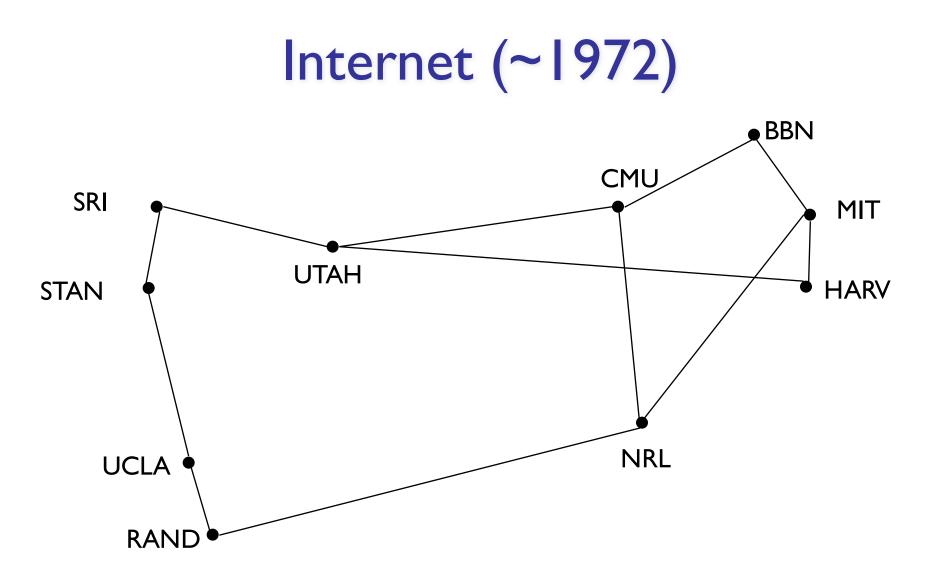


#### What's reachable from TCL?

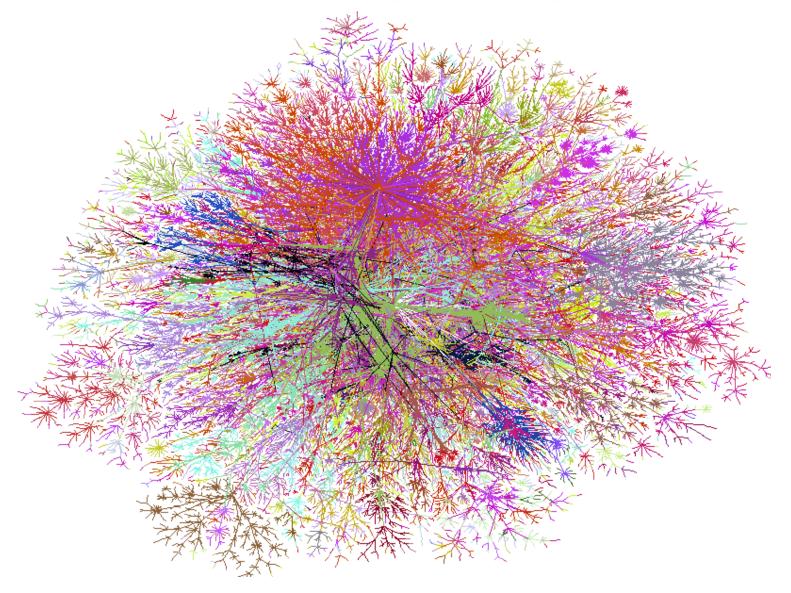


# Graph Applications

- Connectedness in the real world
  - Flights, campus, (social) networks, etc.
  - Useful to finding shortest number of steps/hops

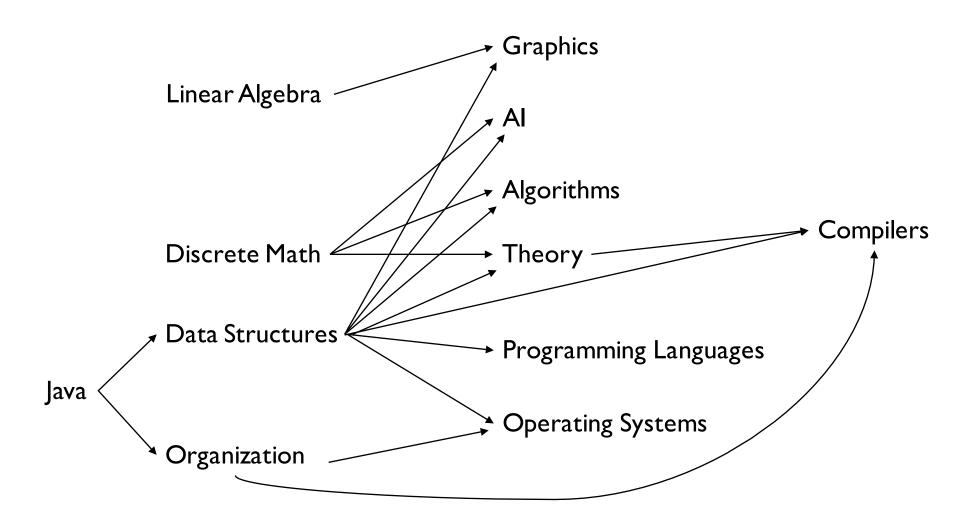






# Graph Applications

- Connectedness in the real world
  - Flights, campus, (social) networks, etc.
  - Often useful to find shortest number of steps/hops
- CS Courses
  - In edges/out edges indicate prerequisite relationships (why no cycles?)



#### **Question:** Is this a tree?

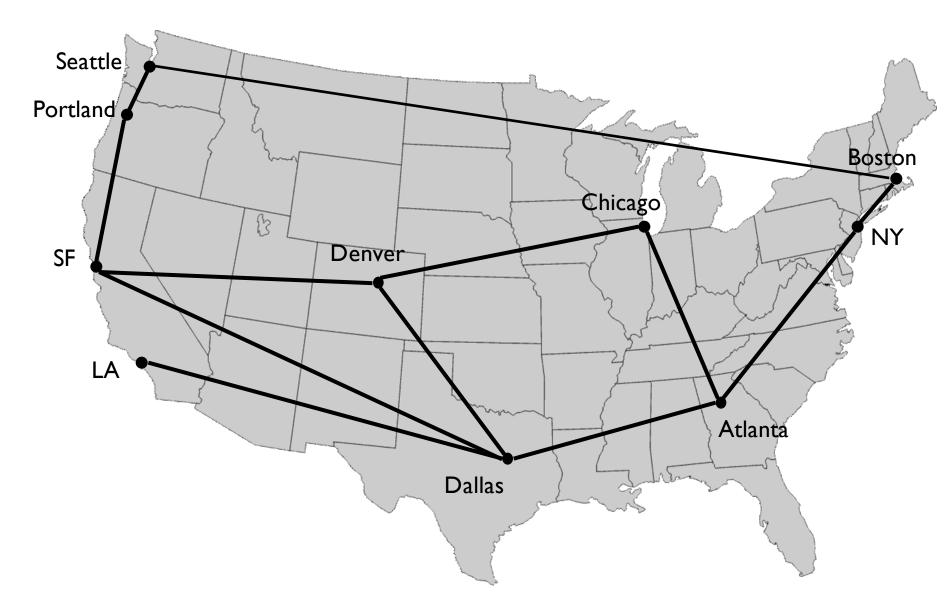
• No! No root node, Courses can have multiple parents

#### Vertices and Edges

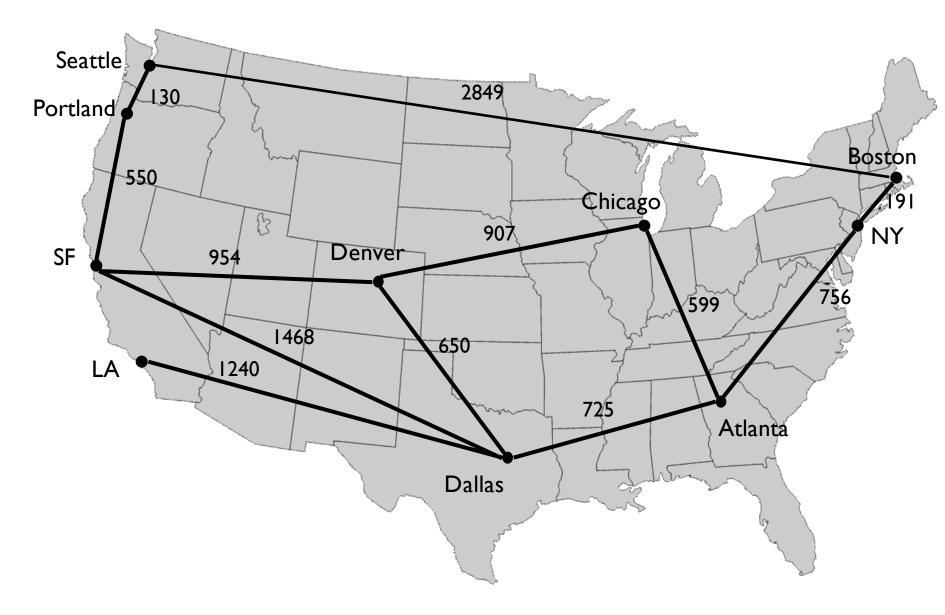
- Vertices represent "things"
- Edges encode relationships between "things"
  - Not all edges are the same

Edges

- Edges can have different "weight"
- Weight = the cost of traversing that edge
  - Cost may be a function of time, distance, price to pay, probability, etc.
- May lead to different solutions to previously answered questions
  - What is shortest path between SF and NY given edge weights?



• What is the shortest path from SF to Boston?



• What is the shortest path from SF to Boston?

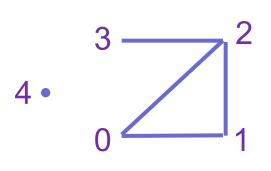
# Representing Graphs

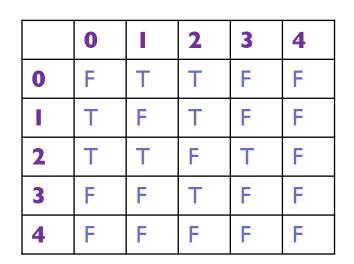
Let's think back to the ways we represented trees:

- Nodes store explicit pointers to parent/children
- Nodes are stored in a Vector
  - Which was better for sparse trees?
  - Which was better for dense trees?

### Adjacency Matrix

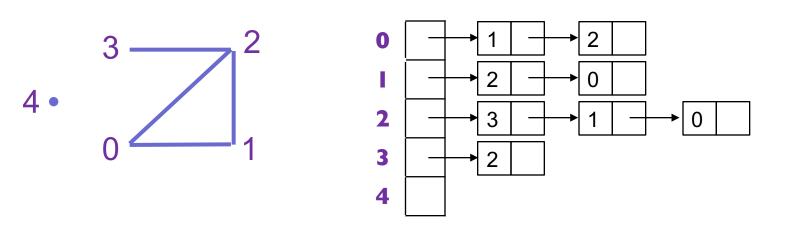
- Let G = (V, E) be a graph with *n* vertices
  - Number the vertices 0...n-1
  - The adjacency matrix of G is an n x n matrix where each (x,y) coordinate is T if there is an edge between v<sub>x</sub>,v<sub>y</sub> and F otherwise.
- Example:





#### Adjacency List

- Let G = (V, E) be a graph with *n* vertices
  - Number the vertices 0...n-1
  - The adjacency list of G is a Vector of length *n* where each entry in the Vector contains a list of all adjacent vertices.
- Example:



#### **Representation Tradeoffs**

- Let G = (V, E) be a graph with *n* vertices
- What is the maximum number of edges in G?
  - $m \leq n^2$  (every node connected to every other node)
- G is dense if m is close to  $n^2$
- G is sparse if m is far from  $n^2$

| <b>Representation Tradeoffs</b>                               |                     |                                |
|---------------------------------------------------------------|---------------------|--------------------------------|
| • $G = (V, E)$ with $ E  = m,  V  = n$                        |                     |                                |
|                                                               | Adjacency<br>Matrix | Adjacency<br>List              |
| Space                                                         | O(n <sup>2</sup> )  | O(n+m)                         |
| Time to check if $v_1$ connected to $v_2$                     | O(1)                | O(out-degree(v <sub>1</sub> )) |
| Time to find all<br>v <sub>i</sub> adjacent to v <sub>1</sub> | O(n)                | O(out-degree(v <sub>1</sub> )) |
| Time to visit all edges                                       | O(n²)               | O(n+m)                         |

# No Clear Efficiency Winner

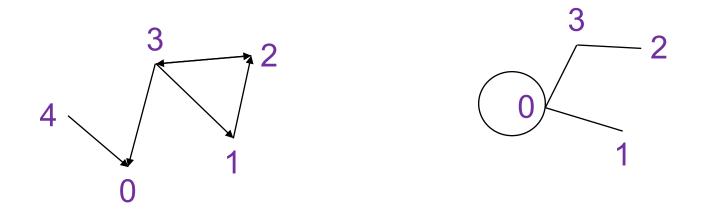
- Matrix is better for dense graphs
- List is better for sparse graphs
- Graphs "in the middle"?

#### **Other Considerations**

- What API should graphs support?
  - Want to lookup vertices by label
  - Want extra information to manage traversals
    - "Visited" info for nodes and edges
- What does it mean for two vertices to be equal? Two edges?
- Next class we will talk about implementation details and traversal strategies...

#### Practice

• Draw the adjacency matrix and adjacency list representations of the following graphs:



What does it mean for an adjacency matrix to be symmetric?