
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 32
May 3, 2017

Administrative Details

• Lab 10 Today/Thursday
• Bring design documents to lab!

• Quick Hexapawn Demo?

• Lab 10 is the last lab…
• Next week we will post a sample exam instead

• Review session:
• Monday 5/15 from 7-9pm in Physics 203

Last Time (Monday)

• Finished Binary Search Trees
• predecessor(), remove()
• Game Trees

• For lab, you don’t need to implement backwards
induction

• ComputerPlayer moves randomly, but…

• Each time ComputerPlayer loses, prune losing node

Today’s Outline

• Introduction to Graphs!
• Examples
• Terminology

• 2 Representations

Putting Data Structures in Context

• Types of data structures
• Basic - Lists/Vectors (no ordering relation)
• Linear – Stacks/Queues (ordered by insertion)
• Ordered Structures – value ordering
• Tree - hierarchical ordering
• BST - value ordering (in a hierarchical fashion)

• Next up: Graphs
• The most general way to describe relationships

between data

Graphs

• Definition
• A graph is a collection of vertices (nodes) and

edges (links) connecting them

• Let’s use real world examples for intuitions

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Nodes = cities; Edges = lines connecting cities

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Note: Structure of graph matters, not actual placement of nodes

Types of Graphs

• Undirected
• All edges are bi-directional

• Directed
• Edges have a source and destination

SF Denver

Dallas

SF Denver

Dallas

Seattle

Paths
• A path is a sequence of distinct edges between two nodes

• A cycle is a path that starts and ends at the same node

• Questions:

• What is the shortest path from SF to Boston?
• What is the shortest cycle from SF to SF that goes through

Dallas and Chicago?

Portland

Dallas Atlanta

SF

LA

Denver Chicago

NY

Boston

Connectedness

• Nodes U and V are connected if there is an
edge between U and V

• A connected component is a set S where
there is a path between every vertex pair in S

• A fully connected component is a set S
where there is an edge between every pair of
vertices in S

Eph PondField House

Poker Flats

Mission

Chapin

Paresky

Faculty Club

Health Services

Bronfman

Griffin

Spencer

TCL

West

Jessup

Hopkins

Track

Art

Eph PondField House

Poker Flats

Mission

Chapin

Paresky

Faculty Club

Health Services

Bronfman

Griffin

Spencer

TCL

West

Jessup

Hopkins

Track

Art

What’s reachable from TCL?

Graph Applications

• Connectedness in the real world
• Flights, campus, (social) networks, etc.
• Useful to finding shortest number of steps/hops

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

Internet (~1972)

Internet (~1998)

Graph Applications

• Connectedness in the real world
• Flights, campus, (social) networks, etc.
• Often useful to find shortest number of

steps/hops

• CS Courses
• In edges/out edges indicate prerequisite

relationships (why no cycles?)

Java

Data Structures

Organization

Discrete Math Theory

Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics

Linear Algebra

Question: Is this a tree?
• No! No root node, Courses can have multiple parents

Vertices and Edges

• Vertices represent “things”
• Edges encode relationships between “things”
• Not all edges are the same

Edges

• Edges can have different “weight”
• Weight = the cost of traversing that edge
• Cost may be a function of time, distance, price to

pay, probability, etc.

• May lead to different solutions to previously
answered questions
• What is shortest path between SF and NY given

edge weights?

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

• What is the shortest path from SF to Boston?

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

2849

907

599

650

725

130

550

954

1468

1240

191

756

• What is the shortest path from SF to Boston?

Representing Graphs

Let’s think back to the ways we represented
trees:
• Nodes store explicit pointers to

parent/children
• Nodes are stored in a Vector

• Which was better for sparse trees?
• Which was better for dense trees?

Adjacency Matrix
• Let G = (V, E) be a graph with n vertices
• Number the vertices 0…n-1

• The adjacency matrix of G is an n x n matrix
where each (x,y) coordinate is T if there is an
edge between vx,vy and F otherwise.

• Example:

0 1

23
4

0 1 2 3 4
0 F T T F F

1 T F T F F

2 T T F T F

3 F F T F F

4 F F F F F

Adjacency List
• Let G = (V, E) be a graph with n vertices
• Number the vertices 0…n-1

• The adjacency list of G is a Vector of length n
where each entry in the Vector contains a list of
all adjacent vertices.

• Example:

0 1

23
4

1 2

2 0

3 1 0

2

0
1
2
3
4

Representation Tradeoffs

• Let G = (V, E) be a graph with n vertices
• What is the maximum number of edges in G?
• m <= n2 (every node connected to every other node)

• G is dense if m is close to n2

• G is sparse if m is far from n2

Representation Tradeoffs
• G = (V, E) with |E| = m, |V| = n

Adjacency
Matrix

Adjacency
List

Space

Time to check if
v1 connected to v2

Time to find all
vi adjacent to v1

Time to visit all
edges

O(n2) O(n+m)

O(1) O(out-degree(v1))

O(n) O(out-degree(v1))

O(n2) O(n+m)

No Clear Efficiency Winner

• Matrix is better for dense graphs
• List is better for sparse graphs
• Graphs “in the middle”?

Other Considerations

• What API should graphs support?
• Want to lookup vertices by label
• Want extra information to manage traversals

• “Visited” info for nodes and edges

• What does it mean for two vertices to be
equal? Two edges?

• Next class we will talk about implementation
details and traversal strategies…

Practice

• Draw the adjacency matrix and adjacency list
representations of the following graphs:

• What does it mean for an adjacency matrix to
be symmetric?

0
1

23

4 0
1

2
3

