CSClI |36
Data Structures &
Advanced Programming

Bill Jannen
Lecture 32
May 3, 2017

Administrative Details

Lab 10 Today/Thursday

* Bring design documents to lab!

Quick Hexapawn Demo!

Lab 10 is the last lab...

* Next week we will post a sample exam instead

Review session:
e Monday 5/15 from 7-9pm in Physics 203

Last Time (Monday)

* Finished Binary Search Trees
e predecessor(), remove()

e Game Trees

* For lab, you don’t need to implement backwards
induction

e ComputerPlayer moves randomly, but...

e Each time ComputerPlayer loses, prune losing node

Today’s Outline

* Introduction to Graphs!
* Examples
* Terminology

* 2 Representations

Putting Data Structures in Context

e Types of data structures
 Basic - Lists/Vectors (no ordering relation)
* Linear — Stacks/Queues (ordered by insertion)
* Ordered Structures — value ordering
* Tree - hierarchical ordering
e BST - value ordering (in a hierarchical fashion)
* Next up: Graphs

* The most general way to describe relationships
between data

Graphs

e Definition
e A graph is a collection of vertices (nodes) and
edges (links) connecting them

e Let’s use real world examples for intuitions

~

Seattle.

Portland >,

uoi
;I /

Dallas > L TRE

Nodes = cities; Edges = lines connecting cities

Portland Seattle Boston

f . r
Denver Chicago
SF ? ®
NY
LA [®
Dallas Atlanta

Note: Structure of graph matters, not actual placement of nodes

Types of Graphs

e Undirected

* All edges are bi-directional

i \/ o

Dallas

e Directed

* Edges have a source and destination

’ \/ o

Dallas

Paths

e A is a sequence of distinct edges between two nodes

e A cycleis a path that starts and ends at the same node

Portland Seattle Boston
r . !
Denver Chicago
SF 1 %
e | INY
Dallas Atlanta

e Questions:
* What is the shortest from SF to Boston?

* What is the shortest cycle from SF to SF that goes through
Dallas and Chicago!?

Connectedness

e Nodes U and V are connected if there is an
edge between U and V

A connected component is a set S where
there is a path between every vertex pair in S

* A fully connected component is a set S
where there is an edge between every pair of

vertices in S

(N
N3 riff

Y, —
o ,
)
in.

Y

o bl
A NG

?§ O:A 3\

What’s reachable from TCL?

Graph Applications

e Connectedness in the real world
* Flights, campus, (social) networks, etc.

e Useful to finding shortest number of steps/hops

Internet (~1972)

MIT

HARV

Internet (~1998)

Graph Applications

e Connectedness in the real world
* Flights, campus, (social) networks, etc.

e Often useful to find shortest number of
steps/hops

e CS Courses

* In edges/out edges indicate prerequisite
relationships (why no cycles?)

/ Graphics
Linear Algebra

Al

Algorithms

gl

Compilers
> Theory

Discrete Math

Data Structures :
Programming Languages

Java
Operating Systems
Organization /

\

Question: Is this a tree?
* No! No root node, Courses can have multiple parents

Vertices and Edges

* Vertices represent “things”

* Edges encode relationships between “things”
* Not all edges are the same

Edges

* Edges can have different “weight”

* Weight = the cost of traversing that edge
e Cost may be a function of time, distance, price to
pay, probability, etc.
* May lead to different solutions to previously
answered questions

* What is shortest path between SF and NY given
edge weights!?

B

Seattle .

—
Portland 7 D

Dallas } i

* What is the shortest from SF to Boston!?

B

Seattle.

Portland"""

SF |

K \ — Atlanta

—r

_ Dallas

* What is the shortest from SF to Boston!?

Representing Graphs

Let’s think back to the ways we represented
trees:

* Nodes store explicit pointers to
parent/children

* Nodes are stored in a Vector

* Which was better for sparse trees?

* Which was better for dense trees!?

Adjacency Matrix

 Let G = (V, E) be a graph with n vertices
* Number the vertices 0...n-1

e The adjacency matrix of G is an n x n matrix
where each (x,y) coordinate is T if there is an

edge between v,,v, and F otherwise.

* Example:

n|T|H|4d|T|e

n|lA [T AN

i O e O e O e A e O I -

N
o

(@) W

— N

AlwlNn|=|0

Adjacency List

 Let G = (V, E) be a graph with n vertices
* Number the vertices 0...n-1

* The adjacency list of G is a Vector of length n
where each entry in the Vector contains a list of
all adjacent vertices.

* Example:

N
o

(@) W

— N

A W N = O

Representation Tradeoffs

Let G = (V, E) be a graph with n vertices

What is the maximum number of edges in G?

e m <= n? (every node connected to every other node)

G is dense if m is close to n?

Gis if m is far from n?

Representation Tradeoffs
e G=(V,E)with [E[=m, V| =n

Adjacency Adjacency
Matrix List
Space O(n?) O(n+m)
Time to check if
v, connected to v, O(1) O(out-degree(v,))
Time to find all
v; adjacent to v, O(n) O(out-degree(v4))
Time to visit all O(n?) O(n+m)

edges

No Clear Efficiency Winner

* Matrix is better for dense graphs
e List is better for sparse graphs
* Graphs “in the middle™?

Other Considerations

* What API should graphs support?
* Want to lookup vertices by label

* Want extra information to manage traversals

* “Visited” info for nodes and edges

* What does it mean for two vertices to be
equal? Two edges!

* Next class we will talk about implementation
details and traversal strategies...

Practice

* Draw the adjacency matrix and adjacency list
representations of the following graphs:

2 2
AN ol
1 1
0

* What does it mean for an adjacency matrix to
be symmetric!

