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Administrative Details

• Lab 10 Today/Thursday
• Bring design documents to lab!

• Quick Hexapawn Demo?

• Lab 10 is the last lab…
• Next week we will post a sample exam instead

• Review session:
• Monday 5/15 from 7-9pm in Physics 203



Last Time (Monday)

• Finished Binary Search Trees
• predecessor(), remove()
• Game Trees

• For lab, you don’t need to implement backwards 
induction

• ComputerPlayer moves randomly, but…

• Each time ComputerPlayer loses, prune losing node



Today’s Outline

• Introduction to Graphs!
• Examples
• Terminology

• 2 Representations



Putting Data Structures in Context

• Types of data structures
• Basic - Lists/Vectors (no ordering relation)
• Linear – Stacks/Queues (ordered by insertion)
• Ordered Structures – value ordering
• Tree - hierarchical ordering
• BST - value ordering (in a hierarchical fashion)

• Next up: Graphs
• The most general way to describe relationships 

between data



Graphs

• Definition
• A graph is a collection of vertices (nodes) and 

edges (links) connecting them

• Let’s use real world examples for intuitions
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Nodes = cities; Edges = lines connecting cities
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Note: Structure of graph matters, not actual placement of nodes



Types of Graphs

• Undirected
• All edges are bi-directional

• Directed
• Edges have a source and destination

SF Denver

Dallas

SF Denver

Dallas



Seattle

Paths
• A path is a sequence of distinct edges between two nodes

• A cycle is a path that starts and ends at the same node

• Questions:

• What is the shortest path from SF to Boston?
• What is the shortest cycle from SF to SF that goes through 

Dallas and Chicago? 
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Connectedness

• Nodes U and V are connected if there is an 
edge between U and V

• A connected component is a set S where 
there is a path between every vertex pair in S

• A fully connected component is a set S
where there is an edge between every pair of 
vertices in S



Eph PondField House

Poker Flats

Mission

Chapin

Paresky

Faculty Club

Health Services

Bronfman

Griffin

Spencer

TCL

West

Jessup

Hopkins

Track

Art



Eph PondField House

Poker Flats

Mission

Chapin

Paresky

Faculty Club

Health Services

Bronfman

Griffin

Spencer

TCL

West

Jessup

Hopkins

Track

Art

What’s reachable from TCL?



Graph Applications

• Connectedness in the real world
• Flights, campus, (social) networks, etc.
• Useful to finding shortest number of steps/hops
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Graph Applications

• Connectedness in the real world
• Flights, campus, (social) networks, etc.
• Often useful to find shortest number of 

steps/hops

• CS Courses
• In edges/out edges indicate prerequisite 

relationships (why no cycles?)



Java

Data Structures

Organization

Discrete Math Theory

Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics

Linear Algebra

Question: Is this a tree?
• No! No root node, Courses can have multiple parents



Vertices and Edges

• Vertices represent “things”
• Edges encode relationships between “things”
• Not all edges are the same



Edges

• Edges can have different “weight” 
• Weight = the cost of traversing that edge
• Cost may be a function of time, distance, price to 

pay, probability, etc.

• May lead to different solutions to previously 
answered questions
• What is shortest path between SF and NY given 

edge weights?
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• What is the shortest path from SF to Boston?
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• What is the shortest path from SF to Boston?



Representing Graphs

Let’s think back to the ways we represented 
trees:
• Nodes store explicit pointers to 

parent/children
• Nodes are stored in a Vector

• Which was better for sparse trees?
• Which was better for dense trees?



Adjacency Matrix
• Let G = (V, E) be a graph with n vertices
• Number the vertices 0…n-1

• The adjacency matrix of G is an n x n matrix 
where each (x,y) coordinate is T if there is an 
edge between vx,vy and F otherwise.

• Example:

0 1

23
4

0 1 2 3 4
0 F T T F F

1 T F T F F

2 T T F T F

3 F F T F F

4 F F F F F



Adjacency List
• Let G = (V, E) be a graph with n vertices
• Number the vertices 0…n-1

• The adjacency list of G is a Vector of length n
where each entry in the Vector contains a list of 
all adjacent vertices.

• Example:

0 1

23
4

1 2

2 0

3 1 0

2

0
1
2
3
4



Representation Tradeoffs

• Let G = (V, E) be a graph with n vertices
• What is the maximum number of edges in G?
• m <= n2 (every node connected to every other node)

• G is dense if m is close to n2

• G is sparse if m is far from n2



Representation Tradeoffs
• G = (V, E) with |E| = m, |V| = n

Adjacency
Matrix

Adjacency
List

Space

Time to check if
v1 connected to v2

Time to find all
vi adjacent to v1

Time to visit all
edges

O(n2) O(n+m)

O(1) O(out-degree(v1))

O(n) O(out-degree(v1))

O(n2) O(n+m)



No Clear Efficiency Winner

• Matrix is better for dense graphs
• List is better for sparse graphs
• Graphs “in the middle”?



Other Considerations

• What API should graphs support?
• Want to lookup vertices by label
• Want extra information to manage traversals

• “Visited” info for nodes and edges

• What does it mean for two vertices to be 
equal? Two edges?

• Next class we will talk about implementation 
details and traversal strategies…



Practice

• Draw the adjacency matrix and adjacency list 
representations of the following graphs:

• What does it mean for an adjacency matrix to 
be symmetric?

0
1

23

4 0
1

2
3


