
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 31
May 1, 2017

Lab 9?

Administrative Details

• This Week: Hexapawn Lab
• Bailey 313
• Implement a game and 3 types of players

• Human, AI, Random

• Again, you may choose to work with a partner
• EACH INDIVIDUAL must come to lab with a

design doc for GameTree class
– We will check at start of lab, -2 points if you come empty-

handed

Last Time

• Splay tree demo
• Implemented balance() for BSTs
• Said farewell to Morgan L

Today’s Outline

• Binary search tree remove()
• Discuss game trees

Recap

• Previously, we looked at several BST methods:
• Constructor(s)
• protected BT<E> locate(BT<E> root, E value)

• public boolean contains(E value)
• public E get(E value)
• public void add(E value)

• protected BT predecessor(BT root)
• What is the intuition for predecessor?

Removal

• Removing the root is the hardest
• If we figure out how to remove the root, we

can remove any element in BST in same way
• Why?

• How?

• We need to implement:
• protected BT<E> removeTop(BT<E> top)
• public E remove(E value)

removeTop(BT<E> topNode)

Remember the BST requirements:
1. All nodes in the left subtree are <= root
2. All nodes in the right subtree are >= root

removeTop() cases:
• Case 1: No left BinaryTree

• Case 2: No right BinaryTree
• Case 3: Left node has no right subtree
• Case 4: Everything else (general case)

remove(E value)

• Locate the target node with the target value
• removeTop() the target node
• Adjust target node’s old parent to point to the

root of the new subtree

Game Trees

Game Trees

• Nodes are positions in a game (game state)

• Edges are moves (transition from one game state to another)
• All nodes at a given level represent moves by the same player

• Leaf nodes represent ending board states (winner or tie)
• # of leaf nodes = # of ways a game can be played

Game Trees

• In AI, often search the game tree and use an
algorithm like minimax to choose the next
“best move”
• Chess, checkers, Go, etc.
• Why not real-time games

Game Trees

• The complete game tree: the root is the
initial game state and the tree contains all
possible moves from each position
• You will build complete Hexapawn game trees
• But your computer player will “prune” the losing

branches

Backwards Induction (from Wikipedia)

• Pick 3 colors: player 1 win (P1W), player 2 win (P2W), and tie (T).

• Color leaves (height 0) of the game tree so that:
• all wins for player 1 are colored P1W,
• all wins for player 2 are colored P2W,
• all ties are T.

• Look at height 1 nodes. For each node:
• If any child is colored for the current player’s opponent, color this for the current

player’s opponent
• If all children are colored for the current player, color this node for the current

player
• Otherwise, color this node for a tie

• Repeat for each level, moving upwards, until all nodes are colored.

• The color of the root node is the outcome of optimal play.

Backwards Induction (from Wikipedia)

