
Binary Search Trees

CS136

Review

• Trees	give	many	O(lg n)	operations
• Trees	are	only	efficient	when	balanced
• Can	have	arbitrary	trees
• Heap:	parent	larger	than	children
• Heap	sort:

• build	a	heap	O(n	lg n),	read	out	values	O(n	lg n)
• Works	in	place!

• Binary	search	tree:	left	<	parent	<	right

BST	Interface

• Insert	(“add”)	key-value	pair
• Get	value	from	key
• Size
• Clear
• Remove	value	associated	with	key
• Contains	key
• Iterate
• Balance?

Example	Usage:	Dictionary

• Create	a	BST	of	ComparableAssociations
• Order	BST	by	key
• Two	objects	are	equal	if	keys	are	equal

• What	would	add(word,	def)	and	lookup(word)	look	like	using	a	BST?

• Different	dictionary	implementations	in	CS136

Abstractions	on	Abstractions

• Assume	we	already	have	BinaryTree<T>	(we	can	just	grab	it	from	
structure5)
• Build	BST<T> by	abstracting	around	BT<T>
• class	BinarySearchTree<T>	{			BinaryTree<T>	root;	}

Helper	Method

• Contains/get/remove/insert	all	depend	on	locating the	correct	place	
in	the	tree	for	the	specific	key
• Let’s	abstract	this	functionality

Locate
protected BT locate(BT top, Object value) {

// pre: top and value are non-null

// post: returns “highest” node with the desired value,

// or node to which value should be added

Object topValue = top.value();

BT child;

// found at top: done
if (topValue.equals(value)) return top;

// look left if less-than, right if greater-than

if (ordering.compare(topValue,value) < 0) {

child = top.right();

} else {

child = top.left();

}

// no child there: not in tree, return this node,

// else keep searching

if (child.isEmpty()) { return top; }

else { return locate(child, value); }

}

Contains()	is	easy

• Did	locate	return	the	value	that	we	expected?

Add	(“insert”)

• If	the	tree	is	empty,	insert	at	the	root
• Otherwise,	locate()

• Replace	(push	down)	parent	or
• Insert	left	or
• Insert	right

• What	order	should	we	insert	to	maintain	balance?
• How	can	we	maintain	balance	if	we	can’t	insert	in	this	order

Digression	1

• Can	we	design	a	binary	search	tree	that	always	gives	expected	O(lg n)	
operations,	regardless	of	insertion	order?
• Yes!
• AVL	trees;	Adelson-Velsky and	Landis,	1962
• Red-Black	Trees;	Baker,	1972
• Splay	Trees;	Sleator and	Tarjan,	1985

A

B

C

+2

+1

0

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree. A node
with balance factor 1, 0, or -1 is considered balanced.

• A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

A

B

C

+2

+1

0
A

B

C

0

00

Single	Rotation

Unbalanced trees can be rotated to achieve balance.

B

E

F

-2

01

A D
-10

C 0

D

E

F

-2

0-2

B
0

A 0 C
0

B

D

E

0

+10

A
0

F
0

C
0

Double	Rotation

Digression	2:	BST-sort

• Build	a	BST	sort	analogous	to	Heap	sort
• Is	this	a	good	idea?
• To	be	continued…

