HEAP SORT

Deterministic, but not stable
O(n lg n) run time
Only O(1) additional cost!

¢ Works in place

¢ Stackless

Ideal for fixed-memory environments, like GPU kernel programming and

embedded processors

RETURN TO BINARY TREES

Monday: Heap sort
Wednesday: BST implementation

HEAP SORT Friday: ~ BST balance

& Monday: BST remove

HEAP REVIEW

 Faster than insertion sort, and merge and quicksort are impossible in this environment

Elegant implementation

HEAP = COMPLETE BINARY TREE WITH HEAP PROPERTY EFFICIENT IMPLICIT HEAP REPRESENTATION

Parents have greater values

5 than children
At most two children

Value [100

All levels full except the last &
Last level filled from the left

HEAP SORT IDEA

* Build a max heap using the implicit complete binary tree notation
¢ Children of node at i are at 2i+1 and 2i+2
¢ Parent is greater than its children (and has index floor((i-1)/2))
¢ Repeated “sift down” operations
HEAP SORT IMPLEMENTATION * Repeatedly extract the max
¢ On step j, swap element 0 with elementN—j—1

* Consider the end fixed and sift down the new root

BE CAREFUL

* The tree is a concept

* No explicit tree

public class HeapSort {

/* Helper function: sift element[parent] down the tree x/
void siftDown(Element[] element, int parent, final int end) {

final Element value = element[parent];

int maxChild = parent % 2 + 1;
while (maxChild <= end) {

// See if the other child is larger
if (maxChild < end) {
final int otherChild = maxChild + 1;
maxChild = (element[otherChild] > element[maxChild]) ?
otherChild : maxChild;
i

// Stop when the parent is larger than the max child

public void heapSort(Element[] element) {
// Form a max heap
final int N = element.length;

for (int i =N/ 2; i >=0; —-i)
siftDown(element, i, N - 1);

// Read out the values

for (int i =N - 1; i >=1; —i) {
// Swap out of the heap region
final Element temp = element[0];
element[0] = element[il;
element[i] = temp;

// Restore the heap property
siftDown(element, 0, i - 1);

* No pOinterS if (value >= element[maxChild]) break; N 3
B % element [parent] = element [maxChild]
* The heap structure is not itself sorted parent - naxChild:
= 7 maxChild = parent'* 2+1
* We build a max heap to sort from least to greatest because we’re }
going to read the values out in backwards order elenent [parent] = value; N

