CSClI 136
Data Structures &
Advanced Programming

Bill Jannen
Lecture 27
April 21, 2017



Administrative Details

e Lab 8: Lexicon
* Due Monday
 Turn in one lab per group

e Lab 9: Simulating Business (Queues)
e Lab 13.7 from the book

e Bank vs. Supermarket
e Handout with instructions/hints will be posted *later*™
than usual so you have time to come up with your
own designs



Last Time

Compact tree representation
Priority queue interface
OrderedVector Priority queue

Introduced heaps



Today’s Outline

* Heap implementations



Heap

* Definition: A binary tree whose root is a
minimum value and whose subtrees are also heaps

* node.value() <= node.left.value()
* node.value() <= node.right.value()

* Implication: any path from root to leaf is in
ascending order

* Implication: several valid heaps for same
data set (no unique representation)



7

N

| 9

SN S

65 58 40

V4 7

N N
9 58 9 40
SN S N4

40 |1 65 Il 65 58



Implementing Heaps

What we know:

* We can compactly store complete binary trees in
Vectors

* Heaps are complete binary trees with added invariants

* ...We can compactly store a heap in a vector!
e class VectorHeap in structure5




Implementing Heaps

Mapping a Binary Tree to a Vector:
* root at position 0
* left child at position 2i+]
* right child at position 2i+2
e parent at (i-1)/2

Mapping the heap invariants to a Vector
e data[i] <= data[2i+1]
e data[i] <= data[2i+2]



Implementing Heaps

public class VectorHeap<E extends Comparable<E>> implements PQ<E> {
protected Vector<E> data;

public VectorHeap() {
data = new Vector<E>();

protected static int parent(int node) {
return (node - 1) / 2;

}

protected static int left(int node) {
return 2*node + 1;

protected static int right(int node) {

return 2*node + 2;



Implementing Heaps: add(obj)

* Assume we start with a complete heap
* (not hard...empty heap is complete)

* After adding a value, resulting heap should still
be a complete heap

Strategy:

|. Place the element in the tree so that the tree is
complete (but not necessarily a heap)

2. Perform operations to make it a heap (while
maintaining completeness)



heap.add(-1)

0
/\
1 2
N N
43 3 3 2

NN N
65 5840 Il 4 42



Insertion



Implementing Heaps: remove()

e Same strategy: preserve tree completeness,
then swap elements to “heapify”

.
2.
3.

Remove top (root) element
Replace with rightmost leaf (last element)

“Push down” until heap is valid again (by always
swapping element with smallest child...why?)



heap.remove()

0
/\
1 2
N N
43 3 3 2

NN N
65 5840 Il 4 42



VectorHeap Summary

* [Look at implementation of PQ using VH]

* Add/remove are both O(log n)

* Data is not completely sorted

e Partial order is maintained



Skew Heap

* What if heaps are not complete BTs!?

* We can implement PQs using skew heaps
instead of “regular” complete heaps

» Key differences:

e Rather than use Vector as underlying data
structure, use BT

* Need a merge operation that merges two heaps
together into one heap

e Details in book...



Tree Recap So Far...

* General Binary Trees
* Express hierarchical relationships
* Ordering is based on some external notion
* i.e,, ancestry, game boards, decisions, etc.
* Heap
* Partially ordered (complete) binary tree based on
priorities
* Node invariants: parent has higher priority than
both children



