
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 26

April 19, 2017

Administrative Details
• Super Lexicon lab today
• May work with a partner
• But must work *with* your partner

• Attend same lab section
• “Pair program” in the lab (or elsewhere)

• Posted hints to get you started
• Tools to help you test
• Main.java
• small.txt, small2.txt, ospd2.txt

Last Time

• Huffman Codes (AN ANTARCTIC PENGUIN)

• Briefly talked about how to represent a tree
using an array (or vector/list)

Today’s Outline

• Finish binary-trees-as-arrays discussion
• Discuss priority queues
• (maybe) Introduce heaps

Using Arrays to Store Trees

• Implicitly encode tree structure using indexes:
• Consider a full tree
• Index nodes as in level-order traversal

• Instead of pointers, use math to walk the tree
• Children of node i are at 2i+1 and 2i+2
• Parent of node j is at (j-1)/2

Orange

Green Violet

Red YellowBlue Indigo

Example

O G V B I R Y

0 1 2 3 4 5 6

Green

Blue Violet

Orange Yellow

Indigo Red

Same Contents, Different Tree

B OG V Y I R
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

Cost of Imbalance

• Possible nodes in level i of a binary tree?
• 2i

• For a tree with n elements…

Height Total Array Elements

Full Tree:

“Degenerate”
Tree:

log2(n)

n

n

2n+1-1

ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links (no “slots” needed)

• Relationships between values are implicitly stored (index + math)

• Works well for complete trees
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space (sparse trees)
• Height of n requires 2n+1-1 array slots even if only O(n)

elements

Open Question: What Does it
Mean to be “Fair”?

• How are people “served” in:
• Cafeterias

• Airplanes

• Emergency room

A Queue

Multiple
Queues

Priority
Queue

Priority Queues

• Name is misleading
• PQs are a bit like normal queues, except they

are not FIFO
• Always dequeue object with highest

priority regardless of when it was enqueued
• Data can be received/inserted in any order,

but it is always returned/removed in same
order (according to priority)

Priority Queues vs. Ordered
Structures

• Like ordered structures (i.e., OrderedVectors and
OrderedLists), PQs appear to keep data in order
• What did we gain from ordered structures?

• Search cost

• What is the cost of maintaining order?
• Insert cost

• Unlike ordered structures, PQs allow the user only
to remove its “smallest/best” element
• Can’t search, no random access

Priority Queues vs. Linear
Structures

• PQs are also similar to Linear structures (i.e., stacks
and queues):
• values are added to the structure one at a time

• may be inspected or removed one at a time

• Unlike Linear structures, not LIFO or FIFO
• Always removed the minimum value (i.e., value with

highest priority)

Priority Queue Uses

• Priority queues are used for:
• Scheduling processes in an operating system

• Priority is function of time lost + process priority

• Order services on server
• low priority tasks shouldn’t interfere with high priority tasks

– Backup, virus scanning, certain updates

• Medical waiting room

• Huffman codes - order by tree size/weight

• To generally rank choices that are generated out of order

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst();
public E remove();
public void add(E value);
public boolean isEmpty();
public int size();
public void clear();

}

Non-destructive

Do not specify
location, priority

Things to Note about PQ Interface

• Unlike previous structures, we do not extend
any other interfaces

• PriorityQueue methods consume Comparable
parameters and return Comparable values

• Possibilities besides using Comparables?
• Comparators

Implementing PQs

• Queue?
• Wouldn’t work so well because we can’t insert and

remove in the “right” way (i.e., keeping things ordered)

• OrderedVector?
• Keep ordered vector of objects
• O(n) to add/remove from vector
• Details in book…
• Can we do better than O(n)?

• Heap?
• Partially ordered binary tree

Heap
• A heap is a complete binary tree where:

• Root holds smallest (highest priority) value
• Left and right subtrees are also heaps (this is important!)

• Any path from root to leaf is in descending order

• Invariant for nodes
• node.value() <= node.left.value()
• node.value() <=node.right.value()

• Several valid heaps for same data set (no unique
representation)

Says nothing about
sibling relationships!

Tries

2

Implementing the Lexicon as a trie

There are several different data structures you could use to implement a lexicon— a sorted array, a
linked list, a binary search tree, a hashtable, and many others. Each of these offers tradeoffs between
the speed of word and prefix lookup, amount of memory required to store the data structure, the
ease of writing and debugging the code, performance of add/remove, and so on. The implementation
we will use is a special kind of tree called a trie (pronounced "try"), designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through
the trie traces out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one
for each letter of the alphabet). Whereas searching a binary search tree eliminates half the words
with a left or right turn, a search in a trie follows the child pointer for the next letter, which narrows
the search to just words starting with that letter. For example, from the root, any words that begin
with n can be found by following the pointer to the n child node. From there, following o leads to
just those words that begin with no and so on recursively. If two words have the same prefix, they
share that initial part of their paths. This saves space since there are typically many shared prefixes
among words. Each node has a boolean isWord flag which indicates that the path taken from the
root to this node represents a word. Here's a conceptual picture of a small trie:

Start

A N Z

E

NT

S

E

R E O

W

The thick border around a node indicates its isWord flag is true. This trie contains the words: a,
are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie
because the path for those strings ends at a node where isWord is false. Any path not drawn is
assumed to not exist, so strings such as cat or next are not valid because there is no such path in
this trie.

Like other trees, a trie is a recursive data structure. All of the children of a given trie node are
themselves smaller tries. You will be making good use of your recursion skills when operating on
the trie!

Managing node children

For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn
above, the root node has three children, one each for the letters A, N, and Z. One possibility for
storing the children pointers is a statically-sized 26-member array of pointers to nodes, where
array[0] is the child for A, array[1] refers to B, ... and array[25] refers to Z. When there is no child
for a given letter, (such as from Z to X) the array entry would be NULL. This arrangement makes it
trivial to find the child for a given letter, you simply access the correct element in the array by letter
index. However, for most nodes within the trie, very few of the 26 pointers are needed, so using a
largely NULL 26-member array is much too expensive. Better alternatives would be a dynamically-
sized array which can grow and shrink as needed, a linked list of children pointers, or leveraging the
standard classes in our toolkit, such as a Vector or Set, to store the children pointers. We leave the
final choice of a space-efficient design up to you, but you should justify the choice you make in
your program comments. Two things you may want to consider: there are at most 26 children, so
even a O(N) operation to find a particular child is no big deal, and operations such as writing the

Nodes:
• letter
• isWord

What are the words represented in this trie?
Leaf node: isWord must be true

Representing Tries

• Not a binary tree… how to store children?
• Options: an array of characters, a Vector, an

OrderedStructure
• Maximum number of children for any node?

• If you have to scan 26 elements to find a child,
how does this affect the Big-O cost of walking
from root to leaf?

• Why might it still be important to keep the
children sorted?

Regular Expressions (Sort of…)

• The ‘*’ wildcard character matches any
sequence of zero or more characters.

• The ‘?’ wildcard character matches either zero
or one character

Regular Expressions (Sort of…)

2

Implementing the Lexicon as a trie

There are several different data structures you could use to implement a lexicon— a sorted array, a
linked list, a binary search tree, a hashtable, and many others. Each of these offers tradeoffs between
the speed of word and prefix lookup, amount of memory required to store the data structure, the
ease of writing and debugging the code, performance of add/remove, and so on. The implementation
we will use is a special kind of tree called a trie (pronounced "try"), designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through
the trie traces out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one
for each letter of the alphabet). Whereas searching a binary search tree eliminates half the words
with a left or right turn, a search in a trie follows the child pointer for the next letter, which narrows
the search to just words starting with that letter. For example, from the root, any words that begin
with n can be found by following the pointer to the n child node. From there, following o leads to
just those words that begin with no and so on recursively. If two words have the same prefix, they
share that initial part of their paths. This saves space since there are typically many shared prefixes
among words. Each node has a boolean isWord flag which indicates that the path taken from the
root to this node represents a word. Here's a conceptual picture of a small trie:

Start

A N Z

E

NT

S

E

R E O

W

The thick border around a node indicates its isWord flag is true. This trie contains the words: a,
are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie
because the path for those strings ends at a node where isWord is false. Any path not drawn is
assumed to not exist, so strings such as cat or next are not valid because there is no such path in
this trie.

Like other trees, a trie is a recursive data structure. All of the children of a given trie node are
themselves smaller tries. You will be making good use of your recursion skills when operating on
the trie!

Managing node children

For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn
above, the root node has three children, one each for the letters A, N, and Z. One possibility for
storing the children pointers is a statically-sized 26-member array of pointers to nodes, where
array[0] is the child for A, array[1] refers to B, ... and array[25] refers to Z. When there is no child
for a given letter, (such as from Z to X) the array entry would be NULL. This arrangement makes it
trivial to find the child for a given letter, you simply access the correct element in the array by letter
index. However, for most nodes within the trie, very few of the 26 pointers are needed, so using a
largely NULL 26-member array is much too expensive. Better alternatives would be a dynamically-
sized array which can grow and shrink as needed, a linked list of children pointers, or leveraging the
standard classes in our toolkit, such as a Vector or Set, to store the children pointers. We leave the
final choice of a space-efficient design up to you, but you should justify the choice you make in
your program comments. Two things you may want to consider: there are at most 26 children, so
even a O(N) operation to find a particular child is no big deal, and operations such as writing the

What word(s) match *T ?
What word(s) match ?S ?

What word(s) match *E* ?

Sets

• Store unique elements (ignore duplicates)
• Useful for checking membership quickly

• Giving the data structures we have covered,
what would be an appropriate choice?
• In reality, probably use hashing

