CSClI 136
Data Structures &
Advanced Programming

Bill Jannen
Lecture 26
April 19, 2017



Administrative Details

e Super Lexicon lab today
* May work with a partner

* But must work *with* your partner

o Attend same lab section

* “Pair program” in the lab (or elsewhere)
* Posted hints to get you started
* Tools to help you test
* Main.java
e small.txt, small2.txt, ospd2.txt



Last Time

e Huffman Codes (AN ANTARCTIC PENGUIN)

* Briefly talked about how to represent a tree
using an array (or vector/list)



Today’s Outline

* Finish binary-trees-as-arrays discussion
* Discuss priority queues

* (maybe) Introduce heaps



Using Arrays to Store Trees

* Implicitly encode tree structure using indexes:
e Consider a full tree

* Index nodes as in level-order traversal

* Instead of pointers, use math to walk the tree
e Children of node i are at 2i+1| and 2i+2

* Parent of node j is at (j-1)/2



Example

Orange

/\

Green Violet

Blue Indigo Red VYellow




Same Contents, Different Tree

Green
Blue Violet
] ] Orange Yellow

N\

Indigo Red

---------------------------------------------

_________

_______________________________________________________




Cost of Imbalance

* Possible nodes in level i of a binary tree?
o 7l

* For a tree with n elements...

Height Total Array Elements
Full Tree: log,(n) n
“Degenerate” n 2n+1.1

Tree:



ArrayTree Tradeoffs

* Why are ArrayTrees good?
e Save space for links (no “slots” needed)
e Relationships between values are implicitly stored (index + math)

* Works well for complete trees

e “A complete binary tree of height h is a full binary tree with 0 or
more of the rightmost leaves of level h removed”

* Why bad!
e Could waste a lot of space (sparse trees)

e Height of n requires 2"*'-1 array slots even if only O(n)
elements



Open Question: What Does it
Mean to be “Fair™?

Multiple

e Cafeterias Queues

A Queue

iori General
; Boarding

e Airplanes ’

* Emergency room
Priority
Queue




Priority Queues

Name is misleading

PQs are a bit like normal queues, except they
are not FIFO

Always dequeue object with highest
priority regardless of when it was enqueued

Data can be received/inserted in any order,
but it is always returned/removed in same
order (according to priority)



Priority Queues vs. Ordered
Structures

* Like ordered structures (i.e., OrderedVectors and
OrderedLists), PQs appear to keep data in order

* What did we gain from ordered structures!
e Search cost

* What is the cost of maintaining order?

* |nsert cost

e Unlike ordered structures, PQs allow the user only
to remove its “‘smallest/best” element

e Can’t search, no random access



Priority Queues vs. Linear
Structures

* PQs are also similar to Linear structures (i.e., stacks
and queues):

e values are added to the structure one at a time

* may be inspected or removed one at a time

e Unlike Linear structures, not LIFO or FIFO

e Always removed the minimum value (i.e., value with
highest priority)



Priority Queue Uses

* Priority queues are used for:

e Scheduling processes in an operating system

 Priority is function of time lost + process priority

e Order services on server

* low priority tasks shouldn’t interfere with high priority tasks

— Backup, virus scanning, certain updates

Medical waiting room

Huffman codes - order by tree size/weight

To generally rank choices that are generated out of order



PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {

public E getFirst(); Non-destructive

public E remove();

public void add(E value); Ek)notspecﬁy

public boolean isEmpty(); o pwkwﬁy

public int size();
public void clear();



Things to Note about PQ Interface

* Unlike previous structures, we do not extend
any other interfaces

* PriorityQueue methods consume Comparable
parameters and return Comparable values

* Possibilities besides using Comparables?

e Comparators



Implementing PQs

e Queue!

* Wouldn’t work so well because we can’t insert and
remove in the “right” way (i.e., keeping things ordered)

* OrderedVector!
e Keep ordered vector of objects
e O(n) to add/remove from vector
* Details in book...
e Can we do better than O(n)?

e Heap!

e Partially ordered binary tree



Heap

* A heap is a complete binary tree where:
e Root holds smallest (highest priority) value
* Left and right subtrees are also heaps (this is important!)

* Any path from root to leaf is in descending order

Says nothing about
e |nvariant for nodes / sibling relationships!

* node.value() <= node.left.value()

* node.value() <=node.right.value()

e Several valid heaps for same data set (no unique
representation)




Tries

&
m O ®
ONONONOG
® ©® C

Nodes:
o J|etter
 isWord Leaf node: isWord must be true

What are the words represented in this trie?



Representing Tries

* Not a binary tree... how to store children?

e Options: an array of characters, a Vector, an
OrderedStructure

e Maximum number of children for any node?
* If you have to scan 26 elements to find a child,

how does this affect the Big-O cost of walking
from root to leaf?

* Why might it still be important to keep the
children sorted?



Regular Expressions (Sort of...)

* The “’ wildcard character matches any
sequence of zero or more characters.

e The ‘? wildcard character matches either zero
or one character



Regular Expressions (Sort of...)

&
olOMO)

& © © © ®®
() OO
What word(s) match *T ? What word(s) match *E* ?
What word(s) match ?8 ?



Sets

e Store unique elements (ignore duplicates)
* Useful for checking membership quickly

e Giving the data structures we have covered,
what would be an appropriate choice!?

* In reality, probably use hashing



