
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 25

April 17, 2017

2

Administrative Details

• Taxes due tomorrow
• Lab 8 posted – Super Lexicon!

• Read through it and plan your designs
• Look for updates posted (starter files and hints)

• Morgan is gone for conference travel
• Jon and Bill are here to answer questions

3

Last Time

• Binary Trees
• Finished discussing tree traversal methods and

iterators
• In-order, post-order, level-order, priority-order…

• DFS, BFS

4

Tree Traversal Recap

• Pre-order: +*237
• Each node is visited before any children. Visit node, then

each node in left subtree, then each node in right subtree.

• In-order: 2*3+7
• Each node is visited after all nodes in left subtree are

visited and before any nodes in right subtree.

• Post-order: 23*7+
• Each node is visited after its children are visited. Visit all

nodes in left subtree, then all nodes in right subtree, then
node itself.

• Level-order: +*723
• All nodes of level i are visited before nodes of level i+1.

+

7*

32

5

Tree Search Strategies

• Two main approaches
• Breadth-first search (BFS)

• Search across tree before searching down to another level
• Level-order traversal

• Depth-first search (DFS)
• Search down tree (to leaf) before search across tree
• Pre-order traversal

• DFS is more efficient if solution is “far away” from
root (i.e., many edges between root and solution)

• Unix grep scans file system in BFS

6

Today’s Outline

• Cool tree application: Huffman Coding
• Alternative tree representation
• Quick Trie Description for Lab

7

Representing Strings

• How many bits to represent a character?
• Often 8 bits (1 byte)

• If so, how many bits to represent the string:
AN ANTARTCTIC PENGUIN

• 20 characters * 8 bits = 160 bits

8

Huffman Codes

• We can compress the representation of some data when the
distribution of 1’s and 0’s is non-uniform

• General idea
• Use less bits for most common letters

AN ANTARCTIC PENGUIN
• Compute letter frequencies

A: 3 N: 4
T: 2 R: 1
C: 2 I: 2
P: 1 E: 1
G: 1 U: 1
_: 2

• Build tree by recursively creating trees of smallest weighted
components

• Result: 67 bits

9

Huffman Example 2

10

Alternative Tree Representations
• Consider Ch 12 Tree class
• Total # “slots” = 4n

• Compare that to a vector,
SLL, array, …

• But trees capture
successor and predecessor
relationships that other
data structures don’t…

Parent

Value

left right

Green

Blue Violet

Indigo Red

Orange Yellow

11

Using Arrays to Store Trees

• Implicitly encode tree structure using indexes:
• Consider a full tree
• Index nodes as in level-order traversal

12

Full vs. Complete Binary Trees

Full binary tree: Every non-leaf
node has 2 children

Complete binary tree: with
the exception of the last level,
all levels are completely filled,
and all nodes are
as far left as possible.

13

Using Arrays to Store Trees

• Implicitly encode tree structure using indexes:
• Consider a full tree
• Index nodes as in level-order traversal

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Where is parent of node j?
• Parent of node j is at (j-1)/2

14

G B V _ _ O Y Green

Blue Violet

Orange Yellow
public class ArrayTree {

protected Object[] data;

protected int left(int node) {
return 2*node+1;

}

protected int parent(int node) {
return (node-1)/2;

}

…
}

0 1 2 3 4 5 6

Indigo Red

15

ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links (no “slots” needed)

• Relationships between values are implicitly stored (index + math)

• Works well for full or complete trees
• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space (sparse trees)
• Height of n requires 2n+1-1 array slots even if only O(n)

elements

