CSClI 136
Data Structures &
Advanced Programming

Bill Jannen
Lecture 20
April 5, 2014

Administrative Details

* Lab 6 is today

* Postscript interpreter

Last Time

e Discussed iterators (Ch 8)

e Used for data structure traversal
e Overcome tension between generality and efficiency

e Reviewed the Iterator interface
e next() and hasNext()

e Reviewed the Abstractlterator class

 Leaves get(), next(), hasNext(), and reset() undefined (as
indicated by “abstract” label in javadocs)

Today’s Outline

Work through one more iterator example
Review postfix for today’s lab
Quick review of switch statement syntax

Begin ordered structures (Ch 11)

* An interesting twist on Lists and Vectors

Warmup: More Iterator Examples

* In addition to our “typical” iterators, we can
also make specialized iterators
* Filtering lterators (cool example in textbook)

e Reverselterator

e Task: given an iterator as input, construct an iterator to
traverse the elements in reverse order

Reverselterator.java

Converting Expressions

* We (i.e., humans) primarily use “infix”’ notation to
evaluate expressions

. (xty)'z
 Computers use “postfix” (also called Reverse Polish)
notation
o xy+z*
e Operators appear after operands

* Parentheses not necessary

Converting Expressions

 Example: x*y+z*w
e Conversion

|) Add full parentheses to preserve order of
operations

(X*y)+(Z*W)

2) Move all operators (+-*/) after operands
(xy*)(zw™)+

3) Remove parentheses
Xy*zw*+

Evaluating Arithmetic Expressions

e Computer processes use stacks to evaluate
arithmetic expressions

e Example: x*y+z
 First rewrite as xy*z+
* Then:

e push x
* pushy
e mult (pop twice, multiply, push result)
* push z

* add (pop twice, add, push result)

Use Stack to Evaluate Postfix Exp

* While there are input “tokens” (i.e., symbols) left:

e Read the next token from input.
* If the token is a value, push it onto the stack.

* Else, the token is an operator that takes n arguments.
* (It is known a priori that the operator takes n arguments.)
e If there are fewer than n values on the stack — error.

 Else, pop the top n values from the stack.
— Evaluate the operator, with the values as arguments.
— Push the returned result, if any, back onto the stack.

* If there is only one value on the stack, that value is
the result of the calculation.

e Else if there are more values in the stack w/o
operators, there are too many input values — error.

Example

© (X*y)H(z/w)
e Convert:
o Xxy*zw/+
e Evaluate:
e Push x
* Pushy
e Mult (Pop y, Pop x, Push x*y)
e Push z
e Push w
e Divide (Pop w, Pop z, Push z/w)
* Add (Pop x*y, Pop z*w, Push (x*y)+(z/w))
e One value left, so we're done.

Lab 6

Reader.java

e Use an Iterator to walk through tokens one at a time
e Multiple constructors — use the right one for the task

Token.java

* “Wrapper” type for all of the tokens you will encounter
e token.kind(): NumberKind, BooleanKind, SymbolKind, ProcedureKind
e (all of the built-in postscript commands are symbols)

SymbolTable.java

e Key-value store

Example usage in lab and in Javadoc on webpage
Use these to help implement Interpreter.java

Switch Stament

e General structure:

switch (byte|short|char|int|String|Enum) {
case

break; — | Without ‘break;’ code “falls

case _ : through” to next case.

break;
default:

}

Moving on...

Ordered Structures

* Until now, we have not required a specific
ordering to the data stored in our structures

* |f we wanted the data ordered/sorted, we had to
do it ourselves

* We often want to keep data ordered
* Allows for faster searching

 Easier data mining - easy to find
best/worst/average/median values™

Ordering Structures

* The key to establishing order is being able to compare
objects and rank them

* We already know how to compare two objects...how?
 Comparators and compare(Object a, Object b)

e Comparable interface and compareTo(object that)

* What are the advantages of each?

An Aside: Natural Comparators

* NaturalComparators bridge the gap between
Comparators and Comparables

class NaturalComparator<E extends Comparable<E>>
implements Comparator<E> {

public int compare(E a, E b) {
return a.compareTo(b);

