
CSCI 136
Data Structures &

Advanced Programming

Bill Jannen
Lecture 20

April 5, 2014

Administrative Details

• Lab 6 is today
• Postscript interpreter

Last Time

• Discussed iterators (Ch 8)
• Used for data structure traversal

• Overcome tension between generality and efficiency

• Reviewed the Iterator interface
• next() and hasNext()

• Reviewed the AbstractIterator class
• Leaves get(), next(), hasNext(), and reset() undefined (as

indicated by “abstract” label in javadocs)

Today’s Outline

• Work through one more iterator example
• Review postfix for today’s lab
• Quick review of switch statement syntax
• Begin ordered structures (Ch 11)
• An interesting twist on Lists and Vectors

Warmup: More Iterator Examples

• In addition to our “typical” iterators, we can
also make specialized iterators
• Filtering Iterators (cool example in textbook)

• ReverseIterator
• Task: given an iterator as input, construct an iterator to

traverse the elements in reverse order

ReverseIterator.java

Converting Expressions

• We (i.e., humans) primarily use “infix” notation to
evaluate expressions
• (x+y)*z

• Computers use “postfix” (also called Reverse Polish)
notation
• xy+z*

• Operators appear after operands

• Parentheses not necessary

Converting Expressions

• Example: x*y+z*w
• Conversion

1) Add full parentheses to preserve order of
operations
(x*y)+(z*w)

2) Move all operators (+-*/) after operands
(xy*)(zw*)+

3) Remove parentheses
xy*zw*+

Evaluating Arithmetic Expressions

• Computer processes use stacks to evaluate
arithmetic expressions

• Example: x*y+z
• First rewrite as xy*z+

• Then:
• push x

• push y
• mult (pop twice, multiply, push result)

• push z

• add (pop twice, add, push result)

Use Stack to Evaluate Postfix Exp
• While there are input “tokens” (i.e., symbols) left:

• Read the next token from input.
• If the token is a value, push it onto the stack.
• Else, the token is an operator that takes n arguments.

• (It is known a priori that the operator takes n arguments.)
• If there are fewer than n values on the stack ® error.
• Else, pop the top n values from the stack.

– Evaluate the operator, with the values as arguments.
– Push the returned result, if any, back onto the stack.

• If there is only one value on the stack, that value is
the result of the calculation.

• Else if there are more values in the stack w/o
operators, there are too many input values ® error.

Example

• (x*y)+(z/w)
• Convert:

• xy*zw/+

• Evaluate:
• Push x
• Push y
• Mult (Pop y, Pop x, Push x*y)
• Push z
• Push w
• Divide (Pop w, Pop z, Push z/w)
• Add (Pop x*y, Pop z*w, Push (x*y)+(z/w))
• One value left, so we’re done.

Lab 6

• Reader.java
• Use an Iterator to walk through tokens one at a time
• Multiple constructors – use the right one for the task

• Token.java
• “Wrapper” type for all of the tokens you will encounter
• token.kind(): NumberKind, BooleanKind, SymbolKind, ProcedureKind
• (all of the built-in postscript commands are symbols)

• SymbolTable.java
• Key-value store

• Example usage in lab and in Javadoc on webpage
• Use these to help implement Interpreter.java

Switch Stament

• General structure:

switch (byte|short|char|int|String|Enum) {
case __:

…
break;

case __:
…
break;

default:
…

}

Without ‘break;’ code “falls
through” to next case.

Moving on…

Ordered Structures

• Until now, we have not required a specific
ordering to the data stored in our structures
• If we wanted the data ordered/sorted, we had to

do it ourselves

• We often want to keep data ordered
• Allows for faster searching

• Easier data mining - easy to find
best/worst/average/median values*

Ordering Structures

• The key to establishing order is being able to compare
objects and rank them

• We already know how to compare two objects…how?
• Comparators and compare(Object a, Object b)

• Comparable interface and compareTo(Object that)

• What are the advantages of each?

An Aside: Natural Comparators

• NaturalComparators bridge the gap between
Comparators and Comparables

class NaturalComparator<E extends Comparable<E>>
implements Comparator<E> {

public int compare(E a, E b) {
return a.compareTo(b);

}
}

