
STACKS & QUEUES

CS136: Data Structures & Advanced Programming

March 15, 2017

LAST CHANCE MIDTERM QUESTIONS

2

LINEAR STRUCTURES

• What if we want to impose an ordering to our lists?

• I.e., provide only one way to add and remove elements from list

• No longer provide access to middle

• Order of removal depends on the order elements were added

• LIFO: Last In First Out

• FIFO: First In First Out

3

EXAMPLES

• FIFO
• Line (queue) at grocery store

• Line at dining hall (hopefully)

• LIFO
• Stack of trays at dining hall

• Stack of cups

• Deck of cards

4

LINEAR INTERFACE

• We need another interface!
• Should have fewer methods than List interface since we are limiting

access…
• Methods:
• addFront/Back(E value) - Add a value to the structure.
• boolean empty() - Returns true iff the structure is empty.
• E getFront/Back() - Preview the next object to be removed.
• E removeFront/Back() – Remove the next value from the structure.
• int size() - Returns the number of elements in the linear structure.

5

LINEAR STRUCTURES

• No “random access” to list elements!
• This means no access to middle of list

• More restrictive than general List structures
• More implementation freedom

• More efficient for some uses

• More choices to think about when building our programs

6

STACKS

• Applications:
• TODO list, implementing recursion

• What methods do we need to define?
• Stack interface methods

• New terms: push, pop, peek
• Push = add to top (back) of stack

• Pop = remove from top (back) of stack

• Peek = look at top of stack (but do not remove)

7

STACK IMPLEMENTATIONS

• Fixed-length array
• int top, Object data[]
• Add/remove from index top

• Vector
• Vector data
• Add/remove from tail

• Linked List
• SLL data
• Add/remove from head

8

+ all operations are O(1)
– always wasted/run out of space

+/– most ops are O(1) (push: O(n) worst case)
– potentially wasted space for capacity

+ all operations are O(1)
– nodes guarantee high space overhead

EVALUATING ARITHMETIC EXPRESSIONS

• Computer processes use stacks to evaluate arithmetic expressions

• Example: x*y+z
• First rewrite as xy*z+ (we’ll look at this rewriting process on Friday)

• Then:

• push x

• push y

• mult (pop twice, multiply, push result)

• push z

• add (pop twice, add, push result)

9

QUEUES

• Applications:
• Print jobs, GUI events, network messages

• Operations
• Push back (“enqueue”)

• Pop front (“dequeue”)

• Size

• Empty

• Many implementation choices… 10

QUEUE IMPLEMENTATIONS

• Fixed-length array

• “Circular buffer” fixed-length array

• Vector

• Circular buffer Vector

• List (with tail pointer)

11

DEQUE

• Applications:
• Queue with regrets, work-stealing
• Push front
• Push back
• Pop front
• Pop back
• Size

12

SUMMARY

• Limiting a data structure to a specific usage pattern can paradoxically be
powerful
• Implementation freedom
• Avoid usage bugs
• Stack = LIFO
• Queue = FIFO
• Good luck on the midterm tonight! Bronfman 7pm or 8:30pm

13

