STACKS & QUEUES

CS136: Data Structures & Advanced Programming
March 15,2017




LAST CHANCE MIDTERM QUESTIONS




LINEAR STRUCTURES

What if we want to impose an ordering to our lists?

l.e., provide only one way to add and remove elements from list
No longer provide access to middle

Order of removal depends on the order elements were added
LIFO: Last In First Out
FIFO: First In First Out




EXAMPLES

FIFO

Line (queue) at grocery store

Line at dining hall (hopefully)

LIFO

Stack of trays at dining hall

Stack of cups

Deck of cards




LINEAR INTERFACE

We need another interface!

Should have fewer methods than List interface since we are limiting
access...

Methods:

addFront/Back(E value) - Add a value to the structure.

boolean empty() - Returns true iff the structure is empty.

E getFront/Back() - Preview the next object to be removed.

E removeFront/Back() — Remove the next value from the structure.
int size() - Returns the number of elements in the linear structure.



LINEAR STRUCTURES

No “random access” to list elements!
This means no access to middle of list

More restrictive than general List structures
More implementation freedom
More efficient for some uses

More choices to think about when building our programs




STACKS

Applications:
TODO list, implementing recursion
What methods do we need to define!?
Stack interface methods
New terms: push, pop, peek
Push = add to top (back) of stack

Pop = remove from top (back) of stack

Peek = look at top of stack (but do not remove)



STACK IMPLEMENTATIONS

Fixed-length array
int top, Object data] ]
Add/remove from index top

+ all operations are O(1)
— always wasted/run out of space

Vector
Vector data
Add/remove from tail

+/— most ops are O(l) (push: O(n) worst case)
— potentially wasted space for capacity

Linked List + all operations are O(|)
SLL data — nodes guarantee high space overhead

Add/remove from head



EVALUATING ARITHMETIC EXPRESSIONS

Computer processes use stacks to evaluate arithmetic expressions
Example: x*y+z
First rewrite as xy*z+ (we’ll look at this rewriting process on Friday)
Then:
push x
push y
mult (pop twice, multiply, push result)
push z
add (pop twice, add, push result)



QUEUES

Applications: .

Print jobs, GUI events, network messages

Operations
Push back (“enqueue”)

Pop front (“dequeue”)

Size
Empty

Many implementation choices...



QUEUE IMPLEMENTATIONS

Fixed-length array

“Circular buffer” fixed-length array
Vector

Circular buffer Vector

List (with tail pointer)




DEQUE

Applications:

* Queue with regrets, work-stealing

Push front
Push back
Pop front

Pop back
Size




SUMMARY

Limiting a data structure to a specific usage pattern can paradoxically be
powerful

Implementation freedom
Avoid usage bugs

Stack = LIFO
Queue = FIFO

Good luck on the midterm tonight! Bronfman 7pm or 8:30pm



