
CSCI 136

Data Structures & Advanced Programming

(Lecture 10)

Sorting 1

Jon Park

Feb 27, 2017

Announcements

• Lab 3 due today

• Lab 4 (Sorting) out tonight

3

Last Time

• Search

• Linear Search

• Binary Search

• Defining Sortable Classes

• Comparable

• Comparator

4

• Review

• Comparable vs Comparator

• Sorting

• Selection Sort

• Bubble Sort

Today’s Outline

5

2 Types of Sortable Classes

• Classes with 1 “obvious” way to compare/sort (a)

vs Classes with multiple ways to compare/sort (b)

Charateristic a b

Implements Comparable<E>

(i.e. contains compareTo(E otherObj))

Need Comparator<E> classes

containing compare(E obj1, E obj2)

The class itself supports comparison

Can be compared/sorted in multiple

ways

• Review

• Comparable vs Comparator

• Sorting

• Selection Sort

• Bubble Sort

Today’s Outline

7

Sorting a Deck of Cards

• Come up with your own algorithm! (and let

me know when one of the algorithms

presented today is exactly like yours. ;))

• Hint: If you’re stuck, think of it this way:

• After 1st iteration, at least 1 item is sorted.

• After ith iteration, at least i items are sorted.

• After nth iteration, all items are sorted. Done!

• What needs to happen during each iteration?

8

• Review

• Comparable vs Comparator

• Sorting

• Selection Sort

• Bubble Sort

Today’s Outline

9

Sorting a Deck of Cards

Time Complexity:

A.O(n)

B.O(n log n)

C.O(n2)

D.O(n3)

E.Not sure

10

Selection Sort

• [11 3 27 5 16]

• [11 3 16 5 27]

• [11 3 5 16 27]

• [5 3 11 16 27]

• [3 5 11 16 27]

Aside: swap() method

public static void swap(int[] data, int i, int j)

12

Selection Sort

public static void selectionSort(int[] data)

13

Selection Sort (with Comparator)
public static void selectionSort(int[] data){

for (int curN = data.length - 1; curN > 0; curN--) {

int maxIdx = 0;

for (int i = 1; i <= curN; i++){

if (data[i] > data[maxIdx])

maxIdx = i;

}

swap(data, maxIdx, curN);

}

}

public static void main(String[] args){

Vector<Patient> patients;

…

selectionSort(patients, new NameComparator());

}
14

Selection Sort Summary

• Overview

• After ith iteration, at least i items are sorted.

 the list is sorted at least after n iterations.

• During ith iteration, select the max item in the

unsorted portion of the list and move it to

right-most location of the unsorted portion.

• Time complexity:

• Best case: O(n2)

• Worst case: O(n2)

• Average case: O(n2) 15

• Review

• Comparable vs Comparator

• Sorting

• Selection Sort

• Bubble Sort

Today’s Outline

16

Sorting a Deck of Cards

Time Complexity:

A.O(n)

B.O(n log n)

C.O(n2)

D.O(n3)

E.Not sure

17

Bubble Sort
• First Pass:

• [5 1 3 2 9]

• [1 5 3 2 9]

• [1 3 5 2 9]

• [1 3 2 5 9]

• Second Pass:

• [1 3 2 5 9]

• [1 3 2 5 9]

• [1 2 3 5 9]

• [1 2 3 5 9]

• Third Pass:

• [1 2 3 5 9]

• [1 2 3 5 9]

• [1 2 3 5 9]

• [1 2 3 5 9]

• [5 1 3 2 9]

Bubble Sort

public static void bubbleSort(int[] data)

19

Bubble Sort Summary

• Overview

• After ith iteration, at least i items are sorted.

• During ith iteration, sweep through the

unsorted portion of the list, swapping 2

adjacent elements if the right one is smaller.

(End after iteration i if no swapping happens!)

• Time complexity:

• Best case: O(n)

• Worst case: O(n2)

• Average case: O(n2) 20

