
Lab 6
Due 10 April

Handout 9
CSCI 136: Spring 2017

05 April

P.S. It’s Just a Stack

1 Short Answers
Include answers to the following problems in the comments at the top of your lab submission. The questions ask you
describe how you would modify linear data structures to complete a task, but you do not need to write any code.

Problem 10.3
Problem 10.4
Problem 10.5

2 Lab Program
This week we will implement a small portion of the stack-based language Postscript, a language designed to describe
graphical images. When you create a Postscript file or print to a PostScript printer, you actually create a file that
contains a program written in this language. A printer or viewer interprets that program to render the image described
by the file. The lab is described in Section 10.5 of Bailey.

Read the assignment and prepare a design for the program before lab so that you can start working right
away. You do not have to hand in your design, but by planning in advance, you will be able to maximize your
productivity (and maybe even finish lab before you leave for break).

3 Notes
1. The starter files and javadoc documentation are on the handouts page. Save these files to your lab directory

and familiarize yourself with the files before starting to work. In addition to starter Java files, we have included
several sample postscript programs that will be useful for testing your code.

2. Make use of the functionality of the classes you are given. Be careful not to spend time developing code that is
already there!

3. Name your interpreter class Interpreter. You should only need to modify the Interpreter class, and
nothing else. Your program should read commands from standard input. You can also redirect input from a file
by using a command like java Interpreter < sample.ps.

4. Make your main method very short. All it should do is create an Interpreter object and tell it to start
parsing the postscript program presented at the command line. Create a method interpret that takes a single
parameter of type Reader and processes the PostScript tokens returned by that Reader.

5. Develop your interpret method incrementally. Get your simple push, pop, and pstack operations working,
then move on to the arithmetic operators, and finally the definition and usage of symbols. Decompose the
program into small, manageable helper methods as you go.

6. Your program should report errors when it encounters invalid input, but these should contain meaningful error
messages. You can use Assert.condition() and Assert.fail() for this.

1



7. Implementing the basic operations– pstack, add, sub, mul, div, dup, exch, eq, ne, def, pop, quit,
and ptable– will allow you to earn 18 out of 20 points. You can earn the last two points by implementing
the extensions outlined in thought questions 3, 4, and 5 from the book. In particular, you should implement
procedure definitions and calls, and the if instruction. These extensions may require a little thought, but ought
to be straight-forward to implement if you have designed your interpreter engine well.

4 Submitting your work
Create a lab directory in the standard way, and turn in your well-documented Interpreter.java file before your
lab section’s designated deadline. Include your short-answer questions as comments in the top of this file.

As in all labs, you will be graded on design, documentation, style, and correctness. Be sure to document your
program with appropriate comments, including a your name and a general description at the top of the file, a description
of each method with pre- and post-conditions where appropriate. Also use comments and descriptive variable names
to clarify sections of the code which may not be clear to someone trying to understand it.

2


