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Super Lexicon!

1 Prelab
Before lab, read through this entire handout carefully. Construct a design document for the LexiconNode class as
described in Section 2.3. We will briefly go over this design together at the beginning of lab on Wednesday.

2 Lab Program
Virtually all modern word processors contain a feature to check the spelling of words in documents. More advanced
word processors also provide suggested corrections for misspelled words. For your next lab, you will be taking on
the fun and challenging task of implementing such as a spelling corrector. You are to implement a highly-efficient
Lexicon class and go on to augment it with additional functionality to find spelling corrections for misspelled words.

The assignment has several purposes:

• To gain further skill with recursion in managing a recursive tree structure and exploring it using sophisticated
algorithms;

• To explore the notion of a layered abstraction where one class (Lexicon) makes use of other classes (e.g., Iterator,
Vector, Set) as part of its internal representation.

2.1 The Lexicon Interface
Your first task is to implement a basic Lexicon class. You may recall this class from the very first day of lecture,
where we used lexicons to store word lists in Boggle. Now, you’ll get a chance to build a lexicon yourself to see the
kind of specialized and highly-efficient data structures that are used in its implementation. This version has similar
functionality to the lexicon from Boggle, with additional operations to remove words, iterate over words, and read
words from a text file. The following methods are in the Lexicon interface. You should implement this interface in a
file called LexiconTrie.java.

public interface Lexicon {
boolean addWord(String word);
boolean removeWord(String word);
boolean containsWord(String word);
boolean containsPrefix(String prefix);
int addWordsFromFile(String filename);
int numWords();
Iterator<String> iterator();
Set<String> suggestCorrections(String target, int maxDistance);
Set<String> matchRegex(String pattern);

}

Most of these methods are straightforward and intuitive. For more information about the usage and purpose of
these methods, refer to the comments in the starter code.
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2.2 Implementing the Lexicon as a Trie
There are several different data structures you could use to implement a lexicon—a sorted array, a linked list, a binary
search tree, and many others. Each of these offers tradeoffs between the speed of word and prefix lookup, amount of
memory required to store the data structure, the ease of writing and debugging the code, performance of add/remove,
and so on. The implementation we will use is a special kind of tree called a trie (pronounced “try”), designed for just
this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through the trie traces
out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one for each letter
of the alphabet). Whereas searching a binary search tree eliminates half the words with a left or right turn (we will
eventually discuss binary search trees in class), a search in a trie follows the child pointer for the next letter, which
narrows the search to just words starting with that letter. For example, from the root, any words that begin with “n”
can be found by following the pointer to the “n” child node. From there, following “o” leads to just those words that
begin with “no” and so on, recursively. If two words have the same prefix, they share that initial part of their paths.
This saves space since there are typically many shared prefixes among words. Each node has a boolean isWord flag
which indicates that the path taken from the root to this node represents a complete word. Here’s a conceptual picture
of a small trie:
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Implementing the Lexicon as a trie

There are several different data structures you could use to implement a lexicon— a sorted array, a
linked list, a binary search tree, a hashtable, and many others. Each of these offers tradeoffs between
the speed of word and prefix lookup, amount of memory required to store the data structure, the
ease of writing and debugging the code, performance of add/remove, and so on. The implementation
we will use is a special kind of tree called a trie (pronounced "try"), designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through
the trie traces out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one
for each letter of the alphabet).  Whereas searching a binary search tree eliminates half the words
with a left or right turn, a search in a trie follows the child pointer for the next letter, which narrows
the search to just words starting with that letter. For example, from the root, any words that begin
with n can be found by following the pointer to the n child node. From there, following o leads to
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share that initial part of their paths.  This saves space since there are typically many shared prefixes
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The thick border around a node indicates its isWord flag is true. This trie contains the words: a,
are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie
because the path for those strings ends at a node where isWord is false. Any path not drawn is
assumed to not exist, so strings such as cat or next are not valid because there is no such path in
this trie.

Like other trees, a trie is a recursive data structure.  All of the children of a given trie node are
themselves smaller tries.  You will be making good use of your recursion skills when operating on
the trie!

Managing node children

For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn
above, the root node has three children, one each for the letters A, N, and Z.  One possibility for
storing the children pointers is a statically-sized 26-member array of pointers to nodes, where
array[0] is the child for A, array[1] refers to B, ... and array[25] refers to Z.  When there is no child
for a given letter, (such as from Z to X) the array entry would be NULL. This arrangement makes it
trivial to find the child for a given letter, you simply access the correct element in the array by letter
index.  However, for most nodes within the trie, very few of the 26 pointers are needed, so using a
largely NULL 26-member array is much too expensive. Better alternatives would be a dynamically-
sized array which can grow and shrink as needed, a linked list of children pointers, or leveraging the
standard classes in our toolkit, such as a Vector or Set, to store the children pointers. We leave the
final choice of a space-efficient design up to you, but you should justify the choice you make in
your program comments. Two things you may want to consider: there are at most 26 children, so
even a O(N) operation to find a particular child is no big deal, and operations such as writing the

The thick border around a node indicates that its isWord flag is true. This trie contains the words: a, are,
as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie because the path for
those strings ends at a node where isWord is false. Any path not drawn is assumed to not exist, so strings such as
cat or next are not valid because there is no such path in this trie.

Like other trees, a trie is a recursive data structure. All of the children of a given trie node are themselves smaller
tries. You will be making good use of your recursion skills when operating on the trie!

2.3 Managing Node Children
For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn above, the root node has
three children, one each for the letters A, N, and Z. One possibility for storing the children pointers is a statically-sized
26-member array of pointers to nodes, where array[0] is the child for A, array[1] refers to B, ... and array[25] refers
to Z. When there is no child for a given letter, (such as from Z to X) the array entry would be null. This arrangement
makes it trivial to find the child for a given letter—you simply access the correct element in the array by letter index.

However, for most nodes within the trie, very few of the 26 pointers are needed, so using a largely null 26-member
array is much too expensive (i.e., it wastes a lot of space). Better alternatives would be a dynamically-sized array
which can grow and shrink as needed (i.e., a Vector), or a linked list of children pointers. We leave the final choice of a
space-efficient design up to you, but you should justify the choice you make (briefly) in your program comments.
Two things you may want to consider: there are at most 26 children, so even a O(N) linear operation to find a particular
child is no big deal, and operations such as iteration require traversing the words in alphabetical order, so keeping the
list of children pointers sorted by letter will be advantageous.

Begin implementing your trie by constructing a LexiconNode class. LexiconNodes should be Compara-
ble, so make sure to implement the Comparable interface. After implementing LexiconNode, you should create

2



a constructor in LexiconTrie that creates an empty LexiconTrie to represent an empty word list. Be sure to
incrementally compile and test your code.

2.4 Searching for Words and Prefixes
Searching the trie for words and prefixes using containsWord and containsPrefix is a matter of tracing out
the path letter by letter. Let’s consider a few examples on the sample trie shown previously. To determine if the string
new is a word, start at the root node and examine its children to find one pointing to n. Once found, recurse on
matching the remainder string ew. Find e among its children, follow its pointer, and recurse again to match w. Once
we arrive at the w node, there are no more letters remaining in the input, so this is the last node. The isWord field of
this node is true, indicating that the path to this node is a word contained in the lexicon.

Alternatively, search for ar. The path exists and we can trace our way through all letters, but the isWord field on
the last node is false, which indicates that this path is not a word. (It is, however, a prefix of other words in the trie).
Searching for nap follows n away from the root, but finds no a child leading from there, so the path for this string
does not exist in the trie and it is neither a word nor a prefix in this trie.

All paths through the trie eventually lead to a valid node (a node where isWord has value true). Therefore
determining whether a string is a prefix of at least one word in the trie is simply a matter of verifying that the path for
the prefix exists.

2.5 Adding Words
Adding a new word into the trie with addWord is a matter of tracing out its path starting from the root, as if searching.
If any part of the path does not exist, the missing nodes must be added to the trie. Lastly, the isWord flag is turned
on for the final node. In some situations, adding a new word will necessitate adding a new node for each letter, for
example, adding the word dot to our sample trie will add three new nodes, one for each letter. On the other hand,
adding the word news would only require adding an s child to the end of existing path for new. Adding the word do
after dot has been added doesn’t require any new nodes at all; it just sets the isWord flag on an existing node to
true. Here is the sample trie after those three words have been added:
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words to a file need to access the words in alphabetical order, so keeping the list of children
pointers sorted by letter will be advantageous.

Searching for words and prefixes

Searching the trie for words and prefixes is a matter of tracing out the path letter by letter. Let's
consider a few examples on the sample trie shown previously. To determine if the string new is a
word, start at the root node and examine its children to find one pointing to n. Once found, recur on
matching the remainder string ew.  Find e among its children, follow its pointer, and recur again to
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All paths through the trie eventually lead to a valid node (a node where isWord has value true).
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of verifying that the path for the prefix exists.

Adding words

Adding a new word into the trie is a matter of tracing out its path starting from the root, as if
searching. If any part of the path does not exist, the missing nodes must be added to the trie. Lastly,
the isWord flag is turned on for the final node.  In some situations, adding a new word will
necessitate adding a new node for each letter, for example, adding the word dot to our sample trie
will add three new nodes, one for each letter. On the other hand, adding the word news would only
require adding an s child to the end of existing path for new.  Adding the word do after dot has
been added doesn't require any new nodes at all, just turning on the flag on an existing node. Here
is the sample trie after those three words have been added:
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A trie is an unusual data structure in that its performance can improve as it becomes more loaded.
Instead of slowing down as its get full, it becomes faster to add words when they can share
common prefix nodes with words already in the trie.

Removing words

The first step to removing a word is tracing out its path and turning off the isWord flag on the final
node. However, your work is not yet done because you need to remove any part of the word that is

A trie is an unusual data structure in that its performance can improve as it becomes more loaded. Instead of
slowing down as its get full, it becomes faster to add words when they can share common prefix nodes with words
already in the trie.

2.6 Removing Words
The first step to removing a word with removeWord is tracing out its path and turning off the isWord flag on the
final node. However, your work is not yet done because you need to remove any part of the word that is now a dead
end. (This last part is left as an optional extra credit extension, described in the next paragraph. You only need
to update the isWord flag for full credit.) All paths in the trie must eventually lead to a word. If the word being
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removed was the only valid word along this path, the nodes along that path must be deleted from the trie along with
the word. For example, if you removed the words zen and not from the trie shown previously, you should have the
result below.
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As a general observation, there should never be a leaf node whose isWord field is false.  If a node
has no children and does not represent a valid word (i.e., isWord is false), then this node is not
part of any path to a valid word in the trie and such nodes should be deleted when removing a word.
In some cases, removing a word from the trie may not require removing any nodes.  For example, if
we were to remove the word new from the above trie, it turns off isWord but all nodes along that
path are still in use for other words.

Important note: when removing a word from the trie, the only nodes that may require deallocation
are nodes on the path to the word that was removed. It would be extremely inefficient if you were to
traverse the whole trie to check for deallocating nodes every time a word was removed, and you
should not use such an inefficient strategy.

Other trie operations

There are few remaining odds and ends to the trie implementation. Creating an iterator and writing
the words to a file both involve a recursive exploration of all paths through the trie to find all of the
contained words.  Remember that in both cases it is only words (not prefixes) that you want to
operate on and that these operations need to access the words in alphabetical order.

Once you have a working lexicon, you're ready to implement the snazzy spelling correction
features. There are two additional Lexicon member functions, one for suggesting simple corrections
and the second for regular expressions matching:

Set<string> *SuggestCorrections(string target, int maxDistance);

Set<string> *MatchRegex(string pattern);

Suggesting corrections

First consider the member function SuggestCorrections. Given a (potentially misspelled) target
string and a maximum distance, this function gathers the set of words from the lexicon that have a
distance to the target string less than or equal to the given maxDistance. We define the distance
between two equal-length strings to be the total number of character positions in which the strings
differ. For example, "place" and "peace" have distance 1, "place" and "plank" have distance 2. The
returned set contains all words in the lexicon that are the same length as the target string and are
within the maximum distance.  

Optional extension. Deleting unneeded nodes is pretty tricky because of the recursive nature of the trie. Think
about how we removed the last element of a SinglyLinkedList. We had to maintain a pointer to the second to
last element to update the pointers appropriately. The same is true in our trie.

As a general observation, there should never be a leaf node whose isWord field is false. If a node has no children
and does not represent a valid word (i.e., isWord is false), then this node is not part of any path to a valid word in
the trie and such nodes should be deleted when removing a word. In some cases, removing a word from the trie may
not require removing any nodes. For example, if we were to remove the word new from the above trie, it turns off
isWord but all nodes along that path are still in use for other words.

Important note: when removing a word from the trie, the only nodes that may require removal are nodes on the
path to the word that was removed. It would be extremely inefficient to check additional nodes that are not on the path.

2.7 Other Trie Operations
There are a few remaining odds and ends to the trie implementation. You need to keep track of the total number of
words stored in the trie. Also, you should add support for reading words from a file using a Scanner. Creating an
iterator to traverse the trie involves a recursive exploration of all paths through the trie to find all of the contained
words. Remember that it is only words (not prefixes) that you want to operate on and that the iterator needs to access
the words in alphabetical order.

Once you have a working lexicon and iterator, you’re ready to implement the snazzy spelling correction features.
There are two additional Lexicon member functions, one for suggesting simple corrections and the second for regular
expressions matching:

Set<String> suggestCorrections(String target, int maxDistance);
Set<String> matchRegex(String pattern);

Sets are basically just fancy Vectors that do not allow duplicates. Check out the javadocs on Sets and SetVectors
in structure5 for more information.

2.8 Suggesting Corrections
The last two parts are a little tricky. suggestCorrections is worth 1 point out of the 20 total points for this assign-
ment. For your final tasks, we revisit recursion again. First consider the member function suggestCorrections.
Given a (potentially misspelled) target string and a maximum distance, this function gathers the set of words from the
lexicon that have a distance to the target string less than or equal to the given maxDistance. We define the distance
between two equal-length strings to be the total number of character positions in which the strings differ. For example,
“place” and “peace” have distance 1, “place” and “plank” have distance 2. The returned set contains all words in the
lexicon that are the same length as the target string and are within the maximum distance.
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For example, consider the original sample trie containing the words a, are, as, new, no, not, and
zen. If we were to call suggestCorrections with the following target string and maximum distance, here are
the suggested corrections:

Target string Max distance Suggested corrections
ben 1 zen
nat 2 new, not

For a more rigorous test, we also provide the word file ospd2.txt, which lists all of the words in the second edition
of the Official Scrabble Player’s Dictionary. Here are a few examples of suggestCorrections run on a lexicon
containing all the words in ospd2.txt:

Target string Max distance Suggested corrections
crw 1 caw, cow, cry

zqwp 2 gawp, yawp

Finding appropriate spelling corrections will require a recursive traversal through the trie gathering those “neigh-
bors” that are close to the target path. You should not find suggestions by examining each word in the lexicon and
seeing if it is close enough. Instead, think about how you can generate candidate suggestions by traversing the path of
the target string taking small ”detours” to the neighbors that are within the maximum distance.

2.9 Matching Regular Expressions
This part is worth 2 points out of the 20 total points for this assignment. Here you will use recursion to match
regular expressions. The matchRegex method takes a regular expression as input and gathers the set of lexicon words
that match that regular expression. As you will remember, a regular expression describes a string-matching pattern.
Ordinary alphabetic letters within the pattern indicate where a candidate word must exactly match. The pattern may
also contain wildcard characters, which specify how and where the candidate word is allowed to vary. Wildcard
characters have the following meanings:

• The ‘*’ wildcard character matches any sequence of zero or more characters.

• The ‘?’ wildcard character matches either zero or one character.

For example, consider the original sample trie containing the words a, are, as, new, no, not, and
zen. Here are the matches for some sample regular expression:

Regular expression Matching words from lexicon
a* a, are, as
a? a, as

*e* are, new, zen
not not

z*abc?*d
*o? no, not

Finding the words that match a regular expression will require applying your finest recursive skills. You should
not find suggestions by examining each word in the lexicon and seeing if it is a match. Instead, think about how to
generate matches by traversing the path of the pattern. For non-wildcard characters, it proceeds just as for traversing
ordinary words. On wildcard characters, “fan out” the search to include all possibilities for that wildcard.
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2.10 A few general suggestions
• Lexicon operations are case-insensitive. Searching for words, suggesting corrections, matching regular expres-

sions, and other operations should have the same behavior for both for upper and lowercase inputs. Be sure to
take that into consideration when designing your data structure and algorithms.

• Build and test incrementally. Develop your trie one function at a time and continually test as you go. We have
provided a handy client program that exercises the lexicon and allows you to drive the testing interactively from
the console. It is supplied in source code form (Main.java) and you are encouraged to modify and extend it as
needed for your purposes.

• Use stubs as placeholders. The testing code we provide makes calls to all of the public member functions on the
Lexicon. In order for the program to compile, you must have implementations for all the functions. However,
this doesn’t suggest that you need to write all the code first and then attempt to debug it all at once. You can
implement methods with placeholder “stubs” to start. If your lexicon doesn’t yet remove words, implement
the remove operation to ignore its argument or raise an error. Before you have implemented regular expression
match, just return an empty set from the function and so on.

• Test on smaller data first. There are small.txt and small2.txt data files with just a few words that are especially
helpful for testing in the early stages. You can also create word data files of your own that test specific trie
configurations. The ospd2.txt word file is very large. It will be useful for stress-testing once you have the basics
in place, but it can be overwhelming to try to debug using that version.

2.11 Thought Questions
Suppose we use an OrderedVector instead of a trie for storing our Lexicon. Discuss how the process of searching for
suggested spelling corrections would differ from our trie-based implementation. Which is more efficient? Why? (If
you have time, you may want to actually create an OrderedVector and experiment with the time command as we did
in Lab 7.)

2.12 Getting Started
We provide basic starter code for this assignment. To obtain it, execute the following command to copy the lexicon
lab folder to your own directory:

cp -r /opt/mac-cs-local/share/cs136/labs/lexicon .

The lexicon directory contains the following files:

• Lexicon.java: The interface that you need to implement

• Main.java: Sample code that you can use to test your LexiconTrie

• LexiconTrie.java: skeleton for a LexiconTrie implementation

• LexiconNode.java: skeleton for the class that represents Trie nodes

• small.txt, small2.txt, ospd2.txt: Data files containing sets of words for you to test with

2.13 Deliverables
Create lab directory in the normal way (<your unix>-lab8/) and submit it to your lab’s drop-off folder before
the due date. Be sure to include:

• Your well-documented source code for all Java files that you write. (You do not need to submit source code for
unmodified starter files, as you should not need to modify them.)

• Your answer to the thought question above in comments at the top of LexiconTrie.java.
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As in all labs, you will be graded on design, documentation, style, and correctness. Be sure to document your
program with appropriate comments, including a general description at the top of the file, a description of each method
with pre- and post-conditions where appropriate. Also use comments and descriptive variable names to clarify sections
of the code which may not be clear to someone trying to understand it.

Have fun!

7


